Remote Access to Clinical
BISS Data

DESIGN & DEVELOPMENT

Lo-fi prototyping and the spiral lifecycle

Andrew Schneider (andrew.schneider@bjss.co.uk)
Technical Architect

B]SS The Problem

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ VISIon statement:

+ “We would like to provide distributed
access to a patient’s clinical [...] we'd like
It now.”

+ Constraints:
+ Cost.
t+ Time to market.
+ Privacy.
+ Politics.

B]SS The Problem

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ How to migrate from the above
“requirements” to a working system.

+ How do we gather requirements?

+ How do we manage change in
reguirements?

+ How do we deliver quickly?

BJSS Selecting a Lifecycle

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ A lot of projects have an emergent
lifecycle.

+ A conscious choice improves a project’s
chances of success.
+ We rejected.:
t XP.
+ Staged.
+ Waterfall.

BJSS Selecting a Lifecycle

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ We chose the spiral model:

+ Applicable to projects without clear
requirements.

+ Focused on reducing risk as project
continues.

+ Provides a framework for managing and
Incorporating change.

+ We were careful to:
+ Define success criteria for each iteration.

B]SS terations

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ Initial prototyping (3 weeks).

+ Demonstrable prototype (6 weeks).
+ Core functionality (8 weeks).

+ First candidate release.

+ FiInal revision.

B]SS Additions

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ We took the “test infected” model from

XP.

+ Made developers more comfortable with
change.

+ Found the initial “loss of productivity”
hard.

+ Enabled us to use the architectural
prototype as a base for production.

B]SS Initial Prototyping — Previous

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

EXperiences

T

Domain experts find it difficult to work with
abstractions.

Domain experts never agree.

Domain experts can have trouble
prioritising.

Domain experts aren’t usually dedicated

to the project. Need to maximise use of
their time.

No common language.
End result: Lack of co-operation.

Initial Prototyping — Workin
BI 55 Prototypes YIS ’

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ Working prototypes are often a
combination of:

+ “GUI builder”
+ Bespoke development.

+ Takes a developer to change the
prototypes.

+ Prototypes give false expectations.
+ The computer can be a distraction.

Initial Prototyping — Lo FI
BI S Prototyping

|}

=

ARE
ENT

=

+ Reverted to pencil and paper.

+ Structured diagrams for common use
cases.

+ Dynamic behaviour added with arrows
and story boards.

+ We could change the prototype during a
meeting.

+ We built an object model at the same
time.

10

BJSS Example: “Edit User Details”

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

“or uset DeTAtEL”

= Pty |
b o I \ WAME " e - m;mﬂﬂtﬁ
LY Rovg T TR CheCey) 1 ;_.m.-i-lau>'
Prigredld:
i /_ﬂ//‘ MEH’H:D; -____ |
) e | Dt | Ave] aen)
G5 , ._ | | HEr ‘

¥ CAn L HAE v SANE hinNDol]

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMFENT

BJSS Example “Browse to Patient”

W&m T PATIEAT !

i

e |

WoATE
A AR L& JIEWS ,-“""""x
! VIEW
II I.-lH‘h
= _'_________._-—r .
i
DynArie LT
- et

- Pest PAACTICE

12

Initial Prototyping — What We
ISS Didn1 Do yping

INN

DESIGN & DEVELOPMENT

+ Follow the whole lo-fi prototyping process.
+ No formal evaluations by users.
+ No record keeping.

13

BJSS Initial Prototyping — Results

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ Paper didn’t get in the way.
+ Interaction was more dynamic.

+ Domain experts could draw on the
diagrams.

+ E-malled scanned images.

+ User Interface discussions raised other
ISSUes.

+ Prompted comments such as “try such
and such idea... Mr XXXX has a
prototype of that user interface element.”

14

BJSS Initial Prototyping — Results

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

v+ 2-3 Iterations of a use case in a 30 minute
meeting.

+ Non-functional constraints were added.

+ Greater co-operation than we had
previously experienced.

+ NoO software, less pressure to ship early.

15

BJSS Initial Prototyping - Scaling

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ Scaling improved by:
+ Partitioning use-cases.
+ Partitioning top level user interface.
+ Sharing a common object model.
+ Scaling problems:
+ Difficult to track fine grain requirements.

+ Little support for common interface
components.

16

BJSS Demonstrable Prototype

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

+ Static web site.

+ Allowed people to see the mapping
between the drawings and the computer.

+ Needed little change as most of the issues
already ironed out.

+ Architectural prototype.
+ Using JINI was a risk.
t+ Security was a risk.

+ Ensured we could meet performance
requirements.

+ Allowed us to measure development

17 “velocity”.

BJSS

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

18

Core Functionality

+ Domain experts prioritised.
+ Estimated each diagram.
+ Factored in velocity from prototype.

+ Chose diagrams to fit into development
time.

INNOVATIVE SOFTWARE
DESIGN & DEVELOPMENT

19

First Candidate Release &
Final Revision

+ At this point the project is heavily

committed.

+ Only very minor changes fed in (or

accepted).

+ Delivery was within 10% of predictions.

