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+ VISIon statement:

+ “We would like to provide distributed
access to a patient’s clinical [...] we'd like
It now.”

+ Constraints:
+ Cost.
t+ Time to market.
+ Privacy.
+ Politics.



B]SS The Problem
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+ How to migrate from the above
“requirements” to a working system.

+ How do we gather requirements?

+ How do we manage change in
reguirements?

+ How do we deliver quickly?
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+ A lot of projects have an emergent
lifecycle.

+ A conscious choice improves a project’s
chances of success.
+ We rejected.:
t XP.
+ Staged.
+ Waterfall.



BJSS Selecting a Lifecycle
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+ We chose the spiral model:

+ Applicable to projects without clear
requirements.

+ Focused on reducing risk as project
continues.

+ Provides a framework for managing and
Incorporating change.

+ We were careful to:
+ Define success criteria for each iteration.
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+ Initial prototyping (3 weeks).

+ Demonstrable prototype (6 weeks).
+ Core functionality (8 weeks).

+ First candidate release.

+ FiInal revision.
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+ We took the “test infected” model from

XP.

+ Made developers more comfortable with
change.

+ Found the initial “loss of productivity”
hard.

+ Enabled us to use the architectural
prototype as a base for production.



B ]SS Initial Prototyping — Previous
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EXperiences

T

Domain experts find it difficult to work with
abstractions.

Domain experts never agree.

Domain experts can have trouble
prioritising.

Domain experts aren’t usually dedicated

to the project. Need to maximise use of
their time.

No common language.
End result: Lack of co-operation.
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+ Working prototypes are often a
combination of:

+ “GUI builder”
+ Bespoke development.

+ Takes a developer to change the
prototypes.

+ Prototypes give false expectations.
+ The computer can be a distraction.



Initial Prototyping — Lo FI
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+ Reverted to pencil and paper.

+ Structured diagrams for common use
cases.

+ Dynamic behaviour added with arrows
and story boards.

+ We could change the prototype during a
meeting.

+ We built an object model at the same
time.
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BJSS Example: “Edit User Details”
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BJSS Example “Browse to Patient”
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+ Follow the whole lo-fi prototyping process.
+ No formal evaluations by users.
+ No record keeping.
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BJSS Initial Prototyping — Results
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+ Paper didn’t get in the way.
+ Interaction was more dynamic.

+ Domain experts could draw on the
diagrams.

+ E-malled scanned images.

+ User Interface discussions raised other
ISSUes.

+ Prompted comments such as “try such
and such idea... Mr XXXX has a
prototype of that user interface element.”
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BJSS Initial Prototyping — Results
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v+ 2-3 Iterations of a use case in a 30 minute
meeting.

+ Non-functional constraints were added.

+ Greater co-operation than we had
previously experienced.

+ NoO software, less pressure to ship early.
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BJSS Initial Prototyping - Scaling
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+ Scaling improved by:
+ Partitioning use-cases.
+ Partitioning top level user interface.
+ Sharing a common object model.
+ Scaling problems:
+ Difficult to track fine grain requirements.

+ Little support for common interface
components.
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BJSS Demonstrable Prototype
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+  Static web site.

+ Allowed people to see the mapping
between the drawings and the computer.

+ Needed little change as most of the issues
already ironed out.

+ Architectural prototype.
+ Using JINI was a risk.
t+ Security was a risk.

+ Ensured we could meet performance
requirements.

+ Allowed us to measure development

17 “velocity”.
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Core Functionality

+ Domain experts prioritised.
+ Estimated each diagram.
+ Factored in velocity from prototype.

+ Chose diagrams to fit into development
time.
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First Candidate Release &
Final Revision

+ At this point the project is heavily

committed.

+ Only very minor changes fed in (or

accepted).

+ Delivery was within 10% of predictions.



