
TUTORIALS TUTORIALS AT A GLANCE

oopsla.acm.org OOPSLA 2001 Conference 31

TUTORIALS
Chair: Craig Larman, Valtech

The OOPSLA conference is well known for its high quality tutorials that span a wide
range of relevant and timely topics. OOPSLA 2001 has worked hard to continue this
tradition by offering 70 carefully selected tutorials. The complete tutorial program covers
a broad spectrum of topics selected to appeal to the interests of a wide range of
participants, including practitioners, managers, and researchers. The tutorials are
categorized below for ease of selection; individual tutorials may be found in multiple
categories.

All tutorials include a lunch provided by OOPSLA.

TUTORIALS AT A GLANCE
Tutorials by Date

Sunday, 14 October 2001

Full Day – 8:30 am – 5:00 pm

Half Day – Morning – 8:30 am – 12:00 noon

1 A Brief Tour of Responsibility-Driven Design Convention Ctr —
Room 20

2 Testing Object-Oriented Software Systems Convention Ctr —
Room 13

3 Usage-Centered Design: An Agile Model-Driven Process
for Object-Oriented User Interface Design

Convention Ctr —
Room 25

4 Concepts of Object-Oriented Programming Convention Ctr —
Room 22

5 Lo-Fi Design Strategies for Creating Highly Usable
Object-Oriented User Interfaces

Convention Ctr —
Room 24

6 Inside High-Quality Software Architectures Convention Ctr —
Room 18

7 Dungeons and Patterns! Marriott Hotel —
Meeting Room 11

8 Introduction to Writing Use Cases Marriott Hotel —
Florida Salon V

9 Object-Oriented Design of Human-Computer Interaction Convention Ctr —
Room 15

10 Introducing Patterns (or Any New Idea) into Organizations Convention Ctr —
Room 14

11 Introduction to Concurrent Object-Oriented Programming
in Java

Convention Ctr —
Room 16

12 Agile Methodologies Convention Ctr —
Room 19

TUTORIALS AT A GLANCE TUTORIALS

32 OOPSLA 2001 Conference oopsla.acm.org

Half Day – Afternoon – 1:30 pm – 5:00 pm

Sunday Morning (continued)

13 How to Manage the Change from COBOL to OOP Marriott Hotel —
Salon A

14 Component and Service Architecture Modeling with UML Convention Ctr —
Room 21

15 XML, XSD, and SOAP as a Better Component Model Marriott Hotel —
Florida Salon VI

16 An Introduction to Design Patterns Marriott Hotel —
Florida Salon IV

17 Producing GUIs with Java Marriott Hotel —
Meeting Room 12

18 Designing Concurrent Object-Oriented Programs in Java Convention Ctr —
Room 16

19 Building Parsers with Java Marriott Hotel —
Meeting Room 11

20 Daily Builds Are for Wimps Convention Ctr —
Room 15

21 Designing with Patterns Marriott Hotel —
Florida Salon IV

22 The .NET Framework: The Common Language Runtime
and C#

Marriott Hotel —
Florida Salon VI

23 Garbage Collection Marriott Hotel —
Meeting Room 12

24 Advanced Use Case Writing Marriott Hotel —
Florida Salon V

25 Fractal Patterns and Frameworks in UML — Towards UML
2.0?

Convention Ctr —
Room 21

TUTORIALS TUTORIALS AT A GLANCE

oopsla.acm.org OOPSLA 2001 Conference 33

Monday, 15 October 2001

Full Day – 8:30 am – 5:00 pm

Half Day – Morning – 8:30 am – 12:00 noon

Half Day – Afternoon – 1:30 pm – 5:00 pm

26 Aspect-Oriented Programming with AspectJ™ Convention Ctr —
Room 20

27 Software Architecture: It’s What’s Missing From OO
Methodologies

Convention Ctr —
Room 13

28 Improving Your Use Cases Convention Ctr —
Room 22

29 Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects

Convention Ctr —
Room 15

30 Object-Oriented Reengineering Marriott Hotel —
Meeting Room 12

31 Patterns at Work Marriott Hotel —
Florida Salon VI

32 Designing an Agile Methodology Convention Ctr —
Room 19

33 Exposing and Consuming Web Services with .NET Convention Ctr —
Room 21

34 Efficient Architectures for Object-Oriented
Component-Based Middleware

Marriott Hotel —
Salon A

35 Extreme Programming Live! Marriott Hotel —
Florida Salon IV

36 Patterns and Architectures for J2EE Systems Marriott Hotel —
Florida Salon V

37 Refactoring: Improving the Design of Existing Code Convention Ctr —
Room 16

38 Efficient Implementation of Object-Oriented Programming
Languages

Marriott Hotel —
Salon A

39 Making the Software Process Transparent by Using
Intelligent Agents

Marriott Hotel —
Florida Salon V

40 Surviving Object-Oriented Projects Marriott Hotel —
Florida Salon VI

41 Refactoring to Patterns Convention Ctr —
Room 21

42 How to Really Fail at Software Architecture Convention Ctr —
Room 19

TUTORIALS AT A GLANCE TUTORIALS

34 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, 16 October 2001

Full Day – 10:00 am – 5:00 pm (short lunch break)

Half Day – Afternoon – 1:30 pm – 5:00 pm

43 The Art of Writing Use Cases Marriott Hotel —
Meeting Room 12

44 Architecting Large Business Systems Convention Ctr —
Room 25

45 The UML’s Object Constraint Language (OCL) —
Specifying Components

Marriott Hotel —
Meeting Room 11

46 J2ME Design and Development Considerations Convention Ctr —
Room 16

47 Embedded Systems in C++ — C++ Idioms, Patterns, and
Architecture for Constrained Systems

Convention Ctr —
Room 5

48 Adaptive Object-Model Architecture: How to Build
Systems That Can Dynamically Adapt to New Business
Requirements

Convention Ctr —
Room 15

49 No Stone Unturned: An Introduction to Test-First
Programming

Convention Ctr —
Room 3

50 Designing Software Architecture for Quality: The ADD
Method

Convention Ctr —
Room 22

51 Creating Responsive, Scalable Systems Convention Ctr —
Room 13

52 Leading Retrospectives on OO Projects: Looking Back to
Move Forward

Convention Ctr —
Room 14

53 Business Modeling with the UML Marriott Hotel —
Meeting Room 1

54 XP Meets UML: Development Processes for eTechnology Convention Ctr —
Room 23

55 Component-Based Design: A Complete Worked Example Convention Ctr —
Room 24

56 Developing Java Applications for Small Spaces Convention Ctr —
Room 6

TUTORIALS TUTORIALS AT A GLANCE

oopsla.acm.org OOPSLA 2001 Conference 35

Wednesday, 17 October 2001

Half Day – Afternoon – 1:30 pm – 5:00 pm

57 Patterns for Making Your Business Objects Persistent in a
Relational Database World

Convention Ctr —
Room 3

58 Creativity in Software Development Marriott Hotel —
Meeting Room 11

59 Architectures for Integrating Business Logic into J2EE Convention Ctr —
Room 22

60 Planning Agile Projects Convention Ctr —
Room 16

61 Designing Small Memory Software: Development Patterns
for Systems with Limited Memory

Convention Ctr —
Room 25

62 Reflection in Java Convention Ctr —
Room 5

63 Ruby for the Impatient Marriott Hotel —
Meeting Room 12

64 Realizing Extreme Programming as a Strategic Weapon for
Innovation

Convention Ctr —
Room 23

65 Advanced Extreme Programming Testing Techniques Convention Ctr —
Room 24

66 C++ Idioms Convention Ctr —
Room 13

67 Patterns and Techniques for Developing Performance
Effective Enterprise Java Beans

Marriott Hotel —
Meeting Room 1

68 Pair Programming: Experience the Difference Convention Ctr —
Room 15

69 Objects vs. The Web Convention Ctr —
Room 14

70 OPEN: A Flexible OO/CBD Process for Software-Intensive
Systems Development

Marriott Hotel —
Meeting Room 2

TUTORIALS BY TRACK TUTORIALS

36 OOPSLA 2001 Conference oopsla.acm.org

TUTORIALS BY TRACK

Fundamentals
1 A Brief Tour of Responsibility-Driven Design (Sun. Full Day)

2 Testing Object-Oriented Software Systems (Sun. Full Day)

4 Concepts of Object-Oriented Programming (Sun. Full Day)

8 Introduction to Writing Use Cases (Sun. AM)

12 Agile Methodologies (Sun. AM)

13 How to Manage the Change from COBOL to OOP (Sun. AM)

16 An Introduction to Design Patterns (Sun. AM)

.NET Technologies
15 XML, XSD, and SOAP as a Better Component Model (Sun. AM)

22 The .NET Framework: The Common Language Runtime and C# (Sun. PM)

33 Exposing and Consuming Web Services with .NET (Mon. AM)

Agile Methods and Extreme Programming
12 Agile Methodologies (Sun. AM)

20 Daily Builds Are for Wimps (Sun. PM)

32 Designing an Agile Methodology (Mon. AM)

35 Extreme Programming Live! (Mon. AM)

37 Refactoring: Improving the Design of Existing Code (Mon. AM)

49 No Stone Unturned: An Introduction to Test-First Programming (Tue. PM)

54 XP Meets UML: Development Processes for eTechnology (Tue. PM)

60 Planning Agile Projects (Wed. PM)

64 Realizing Extreme Programming as a Strategic Weapon for Innovation (Wed. PM)

65 Advanced Extreme Programming Testing Techniques (Wed. PM)

68 Pair Programming: Experience the Difference (Wed. PM)

Architecture
6 Inside High-Quality Software Architectures (Sun. AM)

14 Component and Service Architecture Modeling with UML (Sun. AM)

27 Software Architecture: It’s What’s Missing From OO Methodologies
(Mon. Full Day)

29 Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects (Mon. Full Day)

34 Efficient Architectures for Object-Oriented Component-Based Middleware
(Mon. AM)

TUTORIALS TUTORIALS BY TRACK

oopsla.acm.org OOPSLA 2001 Conference 37

36 Patterns and Architectures for J2EE Systems (Mon. AM)

42 How to Really Fail at Software Architecture (Mon. PM)

44 Architecting Large Business Systems (Tue. Full Day)

48 Adaptive Object-Model Architecture: How to Build Systems That Can Dynamically
Adapt to New Business Requirements (Tue. PM)

50 Designing Software Architecture for Quality: The ADD Method (Tue. PM)

51 Creating Responsive, Scalable Systems (Tue. PM)

57 Patterns for Making Your Business Objects Persistent in a Relational Database World
(Weds. PM)

59 Architectures for Integrating Business Logic into J2EE (Wed. PM)

67 Patterns and Techniques for Developing Performance Effective Enterprise Java
Beans (Wed. PM)

69 Objects vs. The Web (Wed. PM)

Components
14 Component and Service Architecture Modeling with UML (Sun. AM)

22 The .NET Framework: The Common Language Runtime and C# (Sun. PM)

25 Fractal Patterns and Frameworks in UML — Towards UML 2.0? (Sun. PM)

34 Efficient Architectures for Object-Oriented Component-Based Middleware
(Mon. AM)

Concurrency
11 Introduction to Concurrent Object-Oriented Programming in Java (Sun. AM)

18 Designing Concurrent Object-Oriented Programs in Java (Sun. PM)

29 Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects (Mon. Full Day)

Emerging Technologies
15 XML, XSD, and SOAP as a Better Component Model (Sun. AM)

22 The .NET Framework: The Common Language Runtime and C# (Sun. PM)

26 Aspect-Oriented Programming with AspectJ™ (Mon. Full Day)

30 Object-Oriented Reengineering (Mon. Full Day)

33 Exposing and Consuming Web Services with .NET (Mon. AM)

39 Making the Software Process Transparent by Using Intelligent Agents (Mon. PM)

63 Ruby for the Impatient (Wed. PM)

TUTORIALS BY TRACK TUTORIALS

38 OOPSLA 2001 Conference oopsla.acm.org

Internet Technologies
15 XML, XSD, and SOAP as a Better Component Model (Sun. AM)

22 The .NET Framework: The Common Language Runtime and C# (Sun. PM)

33 Exposing and Consuming Web Services with .NET (Mon. AM)

36 Patterns and Architectures for J2EE Systems (Mon. AM)

55 Component-Based Design: A Complete Worked Example (Tue. PM)

59 Architectures for Integrating Business Logic into J2EE (Wed. PM)

69 Objects vs. The Web (Wed. PM)

Java Technologies
11 Introduction to Concurrent Object-Oriented Programming in Java (Sun. AM)

17 Producing GUIs with Java (Sun. AM)

18 Designing Concurrent Object-Oriented Programs in Java (Sun. PM)

19 Building Parsers with Java (Sun. PM)

26 Aspect-Oriented Programming with AspectJ™ (Mon. Full Day)

36 Patterns and Architectures for J2EE Systems (Mon. AM)

46 J2ME Design and Development Considerations (Tue. PM)

56 Developing Java Applications for Small Spaces (Tue. PM)

59 Architectures for Integrating Business Logic into J2EE (Wed. PM)

62 Reflection in Java (Wed. PM)

67 Patterns and Techniques for Developing Performance Effective Enterprise Java
Beans (Wed. PM)

Languages (except Java)
15 XML, XSD, and SOAP as a Better Component Model (Sun. AM)

23 Garbage Collection (Sun. PM)

38 Efficient Implementation of Object-Oriented Programming Languages (Mon. PM)

47 Embedded Systems in C++ — C++ Idioms, Patterns, and Architecture for
Constrained Systems (Tue. PM)

63 Ruby for the Impatient (Wed. PM)

66 C++ Idioms (Wed. PM)

Meta-level and Reflective
26 Aspect-Oriented Programming with AspectJ™ (Mon. Full Day)

48 Adaptive Object-Model Architecture: How to Build Systems That Can Dynamically
Adapt to New Business Requirements (Tue. PM)

62 Reflection in Java (Wed. PM)

TUTORIALS TUTORIALS BY TRACK

oopsla.acm.org OOPSLA 2001 Conference 39

Middleware
34 Efficient Architectures for Object-Oriented Component-Based Middleware

(Mon. AM)

36 Patterns and Architectures for J2EE Systems (Mon. AM)

59 Architectures for Integrating Business Logic into J2EE (Wed. PM)

67 Patterns and Techniques for Developing Performance Effective Enterprise Java
Beans (Wed. PM)

Patterns
7 Dungeons and Patterns! (Sun. AM)

10 Introducing Patterns (or Any New Idea) into Organizations (Sun. AM)

16 An Introduction to Design Patterns (Sun. AM)

21 Designing with Patterns (Sun. PM)

25 Fractal Patterns and Frameworks in UML — Towards UML 2.0? (Sun. PM)

29 Pattern-Oriented Software Architecture: Patterns for Concurrent and Networked
Objects (Mon. Full Day)

31 Patterns at Work (Mon. AM)

36 Patterns and Architectures for J2EE Systems (Mon. AM)

41 Refactoring to Patterns (Mon. PM)

57 Patterns for Making Your Business Objects Persistent in a Relational Database World
(Weds. PM)

67 Patterns and Techniques for Developing Performance Effective Enterprise Java
Beans (Wed. PM)

People, Process, and Project Management
10 Introducing Patterns (or Any New Idea) into Organizations (Sun. AM)

39 Making the Software Process Transparent by Using Intelligent Agents (Mon. PM)

40 Surviving Object-Oriented Projects (Mon. PM)

52 Leading Retrospectives on OO Projects: Looking Back to Move Forward (Tue. PM)

58 Creativity in Software Development (Wed. PM)

60 Planning Agile Projects (Wed. PM)

70 OPEN: A Flexible OO/CBD Process for Software-Intensive Systems Development
(Wed. PM)

Refactoring and Reengineering
30 Object-Oriented Reengineering (Mon. Full Day)

37 Refactoring: Improving the Design of Existing Code (Mon. AM)

41 Refactoring to Patterns (Mon. PM)

TUTORIALS BY TRACK TUTORIALS

40 OOPSLA 2001 Conference oopsla.acm.org

Requirements Analysis
8 Introduction to Writing Use Cases (Sun. AM)

24 Advanced Use Case Writing (Sun. PM)

28 Improving Your Use Cases (Mon. Full Day)

43 The Art of Writing Use Cases (Tue. Full Day)

53 Business Modeling with the UML (Tue. PM)

Small or Mobile
46 J2ME Design and Development Considerations (Tue. PM)

47 Embedded Systems in C++ — C++ Idioms, Patterns, and Architecture for
Constrained Systems (Tue. PM)

56 Developing Java Applications for Small Spaces (Tue. PM)

61 Designing Small Memory Software: Development Patterns for Systems with Limited
Memory (Wed. PM)

Testing
2 Testing Object-Oriented Software Systems (Sun. AM)

20 Daily Builds Are for Wimps (Sun. PM)

49 No Stone Unturned: An Introduction to Test-First Programming (Tue. PM)

65 Advanced Extreme Programming Testing Techniques (Wed. PM)

UML
4 Concepts of Object-Oriented Programming (Sun. Full Day)

14 Component and Service Architecture Modeling with UML (Sun. AM)

25 Fractal Patterns and Frameworks in UML — Towards UML 2.0? (Sun. PM)

45 The UML’s Object Constraint Language (OCL) — Specifying Components
(Tue. PM)

53 Business Modeling with the UML (Tue. PM)

54 XP Meets UML: Development Processes for eTechnology (Tue. PM)

Usability and UI
3 Usage-Centered Design: An Agile Model-Driven Process for Object-Oriented User

Interface Design (Sun. Full Day)

5 Lo-Fi Design Strategies for Creating Highly Usable Object-Oriented User Interfaces
(Sun. Full Day)

9 Object-Oriented Design of Human-Computer Interaction (Sun. AM)

17 Producing GUIs with Java (Sun. AM)

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 41

SUNDAY

Sunday, Full Day
Convention Ctr — Room 20
Rebecca Wirfs-Brock,
Wirfs-Brock Associates
Alan McKean,
Wirfs-Brock Associates
Responsibility-Driven Design offers
practical advice for designing,
implementing, and redesigning with
responsibilities. In a responsibility-based
model, objects play specific roles and
occupy well-known positions in the
application architecture. Each object is
accountable for a specific portion of the
work. They collaborate in clearly defined
ways, contracting with each other to fulfill
the larger goals of the application. By
creating a “community of objects,”
assigning specific responsibilities to each,
we build a collaborative model of our
application. Objects are more than simple
bundles of logic and data ... they are
service-providers, information-holders,
structurers, coordinators, controllers, and
interfacers to the outside world! Each
must know and do its part! Thinking in
these terms enables you to build powerful,
flexible applications.
This tutorial, which includes new material
from our forthcoming book, will be an
example-based tour of
Responsibility-Driven Design. It presents
our latest innovations and practical
techniques. Topics include: finding and
evaluating the qualities of candidate
design objects, mapping roles to classes
and interfaces, strategies for assigning
object responsibilities, deciding on the
control style of an application, effective
ways to describe collaborations, how to
organize a design by specifying
contractual relations and obligations, and
techniques for increasing a design’s
flexibility and clarity.
Attendee Background: Participants should
be familiar with object concepts and be
looking for practical techniques, guidelines
and a design process that emphasizes
modeling the behavioral aspects of a
software system.

Presenters: Rebecca Wirfs-Brock is
president of Wirfs-Brock Associates, a firm
specializing in the transfer of object
analysis and design expertise to
organizations and individuals through
training, mentoring, and consulting.
Rebecca has been involved with object
technology since its infancy. She is the
inventor of the set of development practices
known as Responsibility-Driven Design.
From development on the Tektronix
implementation of Smalltalk in the early
1980s, through years of development and
training experience, she is recognized as
one of only a few knowledgeable and
influential practitioners of object-oriented
design. She spent 17 years as a Software
Engineer at Tektronix, where she managed
the first commercial Smalltalk effort and
was the technical lead for the development
of Color Smalltalk. Recently, she has
authored use cases for a
telecommunications framework and an
online banking system and has mentored
teams in use case writing, design,
architecture and managing incremental,
iterative object-technology projects. She
practices what she teaches!
Alan McKean is Vice President and
Director of Educational Services at
Wirfs-Brock Associates. Alan McKean has
devoted most of his career applying
principles of design and adult learning to
find better ways to communicate technical
and design information. A student of R.
Buckminster Fuller and a graduate of the
University of Oregon with a Masters in
Computer Science, he specializes in system
architecture and object-oriented design and
programming. Alan has delivered over a
hundred workshops on designing and
programming object-oriented software
during his 10+ years at Instantiations,
Digitalk, and Wirfs-Brock Associates. Alan
was a keynote speaker at the OOPSLA
Educator’s Symposium in 1995 and has
been invited to speak at this year’s
Educators’ Symposium. Prior to his
training experience, Alan was a Director at
Dynamix, Inc., a computer game company,
where he invented and developed a toolset
for synchronizing animated images with
actors’ recorded voices and a suite of
Smalltalk-based tools for managing
computer game sound effects and music.

1 A Brief Tour of Responsibility-Driven Design

SUNDAY TUTORIALS

42 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Full Day
Convention Ctr — Room 13
John McGregor, Clemson University
The use of object-oriented software
construction techniques and iterative,
incremental processes influence the
organization, structure, and execution of
testing activities in a project. The
techniques presented in the tutorial are
intended to provide a scalable process that
can be tailored to the size of a project and
the criticality of the type of application.
The comprehensive test plan, presented in
the tutorial, integrates the construction
process and the testing process to produce
an efficient and complete development
process.
This tutorial is divided into three parts:
(1) specific techniques supported by small
examples to illustrate specific testing
algorithms, (2) techniques for testing
system level models using enhanced
inspection and review procedures and (3)
a process for system testing presented
within the context of a complete testing
process for object-oriented systems.
Instructional objectives: The participant
will be able to define test cases from use
cases. The participant will be able to build
test suites that reuse test cases from related
uses. The participant will be able to adapt
a generic testing process to his/her
corporate and project environments. The
participant will be able to prioritize tests
based on information in the use cases.
Lecture/discussion: 70% Exercises: 30%
Attendee Background: Attendees should
be familiar with object-oriented concepts
and at least one object-oriented
programming language. It will be helpful
if the attendee is familiar with basic
software testing techniques to the level
gained by practical experience.

Presenter: Dr. John D. McGregor is a
senior partner in Korson-McGregor and
an associate professor of computer
science at Clemson University. Dr.
McGregor has conducted funded research
for organizations such as the National
Science Foundation, DARPA, IBM, and
AT&T. Dr. McGregor has developed
testing techniques for object-oriented
software and developed custom testing
processes for a variety of companies. Dr.
McGregor is co-author of Object-oriented
Software Development: Engineering
Software for Reuse (Van Nostrand
Reinhold) and is co-author of A Practical
Guide to Testing Object-Oriented
Software (Addison-Wesley, 2001). He
writes a column on Testing and Quality for
the Journal of Object-oriented
Programming (JOOP) published by SIGS
Publishing. He has published numerous
articles on software development focusing
on design and quality issues. Dr.
McGregor’s research interests include
software engineering specifically in the
areas of process definition, design quality,
testing and measurement. Dr. McGregor
has given tutorials for several years at
OOPSLA and ECOOP. He presents to
10 - 12 conferences per year as well as
offering industrial courses to demanding
technical audiences.

2 Testing Object-Oriented Software Systems

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 43

Sunday, Full Day
Convention Ctr — Room 25
Larry Constantine,
University of Technology, Sydney;
Constantine & Lockwood, Ltd.
James Noble,
Victoria University of Wellington
Agile processes and lightweight methods
are increasingly popular but share with
their ponderous predecessors an
inattention to usability and user interface
design. Usage-centered design is a proven
industrial-strength process for designing
highly usable and innovative solutions to
interaction-intensive problems. It has been
applied with marked success to projects
ranging from automation programming
tools to classroom information systems to
e-commerce Web sites. Through
alternating lectures, applied exercises, and
discussions, this tutorial introduces a
streamlined process for quickly and
efficiently designing improved user
interfaces supported by robust internal
software. Essential use cases—a
simplified, generalized, and abstract
improvement on conventional use cases—
are used to model tasks and to guide the
design of user interfaces that effectively
support the real needs of users. Through
actual application to a compressed but
representative case study problem,
participants will learn, how to employ
ordinary index cards and accelerated
modeling sessions to quickly understand
and prioritize user roles and user tasks and
to organize the needed user interface
contents. The emphasis will be on
modeling techniques that yield the greatest
payoff from the least effort in design,
techniques that are well-suited to
producing world-class designs through
iterative, time-boxed development within
compressed release cycles.

Attendee Background: Some experience
with use cases and familiarity with the
basic concepts and techniques of
object-orientation are assumed.
Understanding of the basic principles of
usability and user interface design would
be helpful but is not mandatory.
Presenters: Larry Constantine is Adjunct
Professor of Computing Sciences,
University of Technology, Sydney, and
Director of Research and Development for
Constantine & Lockwood, Ltd., the
international design and consulting firm
he co-founded. A pioneer of modern
software engineering practice and a
recognized authority on the human side of
software, he is the co-inventor of essential
use cases and usage-centered design. He
has conducted hundreds of seminars and
tutorials in nineteen countries and his
publications include sixteen books and
nearly 150 papers.
Dr. James Noble is a lecturer at the Victoria
University of Wellington, New Zealand, and
a Consulting Associate with Constantine &
Lockwood, Ltd. He is the co-author of Small
Memory Software: Patterns for Systems
with Limited Memory (Addison-Wesley
2000), and numerous published papers on
software design, user interface design, and
design patterns. He has extensive lecturing
and teaching experience, including tutorials
at OOPSLA, TOOLS Pacific, and OzCHI.

3 Usage-Centered Design: An Agile Model-Driven Process
for Object-Oriented User Interface Design

SUNDAY TUTORIALS

44 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Full Day
Convention Ctr — Room 22
Raimund Ege,
Florida International University
This tutorial defines and teaches the basic
object-oriented concepts, illustrates their
advantages, and introduces the
components and features of
object-oriented programming languages
and development environments. The
tutorial enables an attendee to make an
informed decision about what
language/environment will best serve
his/her software development needs. The
tutorial has two major parts: Part 1
discusses in detail all object-oriented
concepts and uses UML and Java to
illustrate them. The focus will be on a
precise non-confusing definition of the
core concepts and terminology, such as
object, instance, class, interface, attribute,
service, message passing, hierarchy,
inheritance, polymorphism, late binding,
memory management, access
specification, and packaging. Part 2 then
compares the major object-oriented
programming languages: C++, Java,
Smalltalk, and others. The comparison is
done with a double focus: (1) how does
the language support and enforce the
concepts, and (2) how does the language
help software development (to that effect,
I have a small case study program, that
will be solved in all languages). Whether
and how each language supports advanced
concepts, like multiple and repeated
inheritance, genericity, interfaces, is
discussed in detail.
Attendee Background: Attendees are
software professionals who are interested
in learning the fundamental concepts and
advantages of object- oriented
programming and how to apply them in a
modern software development
environment. No previous knowledge of
object-oriented concepts is assumed. The
attendees should have a fundamental
background in computer science and/or
computer programming.

Presenter: Raimund K. Ege is an
Associate Professor of Computer Science
at the Florida International University,
Miami. He is author of Programming in an
Object-Oriented Environment (Academic
Press, 1992), and Object-Oriented
Programming with C++ (Academic Press,
1994). He is an active researcher in the
area of object-oriented concepts, and their
application to programming, user
interfaces, databases, simulation, and
software engineering. He has presented
numerous successful tutorials at major
conferences (OOPSLA, ECOOP, TOOLS).
The tutorials were consistently rated
highest and won praise from organizers
and attendees.

4 Concepts of Object-Oriented Programming

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 45

Sunday, Full Day
Convention Ctr — Room 24
Luke Hohmann, Independent Consultant
Even if a software development project
creates extensive and complete
object-oriented analysis and design
models, it will still be perceived as a
failure if the user interface is poorly
constructed. To be perceived as truly
successful, the system must meet the
needs of the user. This is best done by
designing a user interface that is effective,
appealing, intuitive, and easy to learn. In
other words, you must create a highly
usable object-oriented user interface.
Participants of this tutorial will learn how
to design highly usable object-oriented
user interfaces using the latest in lo-fi
prototyping techniques by creating such
designs in small groups. Upon completion
of this tutorial, participants will be able to:
define usability and its relation to object
technology; define the role of lo-fi and
hi-fi prototyping; design and test lo-fi
prototypes according to timeless
principles of usability; and implement
lo-fi prototypes in a manner that is
consistent with the underlying domain
model.
Attendee Background: Participants
should have a basic knowledge of
object-oriented analysis and design, use
cases, and scenarios; and be involved in
the design and implementation of a project
utilizing a graphical user interface.
Knowledge of a specific object-oriented
programming language is not required.

Presenter: Luke Hohmann is an
independent consultant, committed to
coaching his clients to greater levels of
performance. Mr. Hohmann is author of
Journey of the Software Professional: A
Sociology of Software Development
(Prentice-Hall), as well as numerous
articles on software engineering
management. A skilled instructor and
speaker, Mr. Hohmann has been invited to
many conferences. Mr. Hohmann can be
contacted through e-mail at
LukeHohmann@yahoo.com.

5 Lo-Fi Design Strategies for Creating Highly Usable
Object-Oriented User Interfaces

SUNDAY TUTORIALS

46 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Convention Ctr — Room 18
Frank Buschmann,
Siemens AG, Germany
In this tutorial we examine the secrets of
high-quality software architectures: how
are they specified, what are their
properties, and how are they implemented.
The result is a set of principles consisting
of methodological steps, concrete design
goals that help constructing and
implementing software architectures
successfully as well as a set of properties
that such architectures expose. To
illustrate these steps, goals, and properties
we use a running example from the
industrial automation domain.
Attendee Background: Sound
knowledge in Object Technology.

Presenter: Frank Buschmann is a
software engineer at Siemens Corporate
Technology in Munich, Germany. His
research interests include Object
Technology, Application Frameworks, and
specifically Patterns. Frank has been
involved in several concrete industrial
software development projects. Frank is
co-author of Pattern-Oriented Software
Architecture — A System of Patterns.

6 Inside High-Quality Software Architectures

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 47

Sunday, Morning
Marriott Hotel — Meeting Room 11
Steve Metsker, Capital One
William Wake, Capital One
“Dungeons and Patterns” is a hands-on
tutorial for exploring and learning about
design patterns. Learning design patterns
will help you become a more powerful
object-oriented developer. Unfortunately,
a single reading of Design Patterns won’t
magically implant design pattern
recognition skills in your brain. You have
to learn patterns by doing, which means
you have to start applying patterns before
you can apply them—a monstrous
dilemma! The solution is to practice
patterns in a playful setting where slip-ups
are profitable and painless. In this tutorial
you will join an adventure with others at
your table, seeking the treasure of patterns
hidden within a dungeon replete with
structural traps, motivational pitfalls, and
implementation monsters. These barriers
will succumb to strong collaboration with
your table-mates and will yield to
effective application of the patterns in
Design Patterns. Dungeons and Patterns
will deepen your understanding and
strengthen your skills at recognizing and
applying design patterns.
Attendee Background: Attendees should
have tried reading Design Patterns at least
once. No experience with role-playing
games is required.

Presenters: Steve Metsker is a researcher
and author who explores and writes about
ways to expand the abilities of developers.
Steve’s articles have explained how to
maintain relational integrity in object
models, how to solve logic puzzles in Java,
and how the conception of “object” differs
between Plato and the OO languages.
Steve’s most recent publication is the
book, Building Parsers with Java.
William Wake is interested in XP, patterns,
human-computer interaction, and
information retrieval. He is the author of,
Extreme Programming Explored, and the
inventor of the Test-First Stoplight and the
XP Programmer’s Cube.

7 Dungeons and Patterns!

SUNDAY TUTORIALS

48 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Marriott Hotel — Florida Salon V
Alistair Cockburn,
Humans and Technology
A use case is a way of describing the
required behavior of a system, centered
around what the system offers its users.
Use cases are easy to read, and simple in
concept, but surprisingly tricky to write.
This tutorial is for the beginning use case
writer, to see what a use case looks like,
the basics of how to write one, and how to
organize people to write, review and use
them. The tutorial will be part lecture, and
part hands-on exercises. Attendees will
brainstorm a list of use cases for a system,
write a main scenario, and uncover failure
scenarios. The exercises are designed to
allow the attendees to practice the writing
skills, and discover where use cases get
difficult. At the end of the tutorial, the
attendee will have the basic vocabulary of
use cases, will have seen examples of
good and bad ones, and will have
experienced the variations in writing that
will show up in real use cases.
Attendee Background: This tutorial is
for people just beginning to write or
consider use cases. No particular
background is required.

Presenter: Alistair Cockburn is a highly
regarded instructor and is known as one of
the premier experts on use cases. His
book, Writing Effective Use Cases, set the
standard in the area and was nominated
for Software Development’s Jolt book
award in 2001. Alistair has taught use
case writing since 1994, and has also
acted as consultant on project
management, object-oriented design, and
methodology to the Central Bank of
Norway, the IBM Consulting Group, and
the First Rand Bank of South Africa.
Materials that support his workshops can
be found at
http://members.aol.com/acockburn,
http://crystalmethodologies.org and
http://usecases.org.

8 Introduction to Writing Use Cases

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 49

Sunday, Morning
Convention Ctr — Room 15
Mary Beth Rosson, Virginia Tech
Object-oriented design methods are
claimed to reduce the gap between the
problem domain and the software system.
This has important implications for the
design of human-computer interaction: A
software model that mirrors the real world
should reduce the cognitive distance
between how a system works and the
mental models that users build to use and
understand the software. This tutorial
explores how to apply object-oriented
thinking to the design of human-computer
interaction. The methods discussed are
part of a general scenario-based
framework for usability engineering. In
this framework, a scenario is a narrative of
the goals, actions, and reactions of actors
pursuing goals with an interactive system.
The tutorial presents scenario-based
techniques for developing and integrating
object-oriented views of requirements,
activity design, user interface design, and
usability evaluation. Throughout, design
rationale is captured, serving to raise and
discuss the implications that
object-oriented concepts will have for the
user experience. Concepts and techniques
are introduced briefly, then illustrated with
examples. The format will be lecture
interspersed with presentation and
discussion of the examples.
Attendee Background: General
knowledge of object-oriented concepts,
interest in use-centered design of
interactive systems.

Presenter: Mary Beth Rosson is an
associate professor of computer science at
Virginia Tech. She is an expert in
human-computer interaction (HCI), and
the author of numerous research papers
on the relationship between HCI and
object-oriented design. Rosson has given
research papers and tutorials at the ACM
SIGCHI, OOPSLA, and ECOOP
conferences and has served in many
leadership positions in SIGCHI and
SIGPLAN. Most recently, she was General
Chair of OOPSLA 2000.

9 Object-Oriented Design of Human-Computer Interaction

SUNDAY TUTORIALS

50 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Convention Ctr — Room 14
Mary Lynn Manns,
University of North Carolina at Asheville
Linda Rising, Independent Consultant
Many people who have attended OOPSLA
or other conferences find new ideas that
they wish to take back to their
organizations, but then struggle to make
something happen. This tutorial will help
participants understand what successful
change agents have learned while
attempting to introduce new ideas into
their organizations. The lessons learned
have been documented in an evolving
pattern language titled Introducing
Patterns (or any new idea) into
Organizations. This session will examine
the problems and solutions documented in
this language through the simulation of
attempts to introduce a new idea, such as
patterns, into an organization.
Attendee Background: Anyone in the
software business who is trying to
introduce patterns (or any new idea) into
an organization will find this tutorial
useful. We assume that attendees are
familiar with the notion of patterns.

Presenters: Mary Lynn Manns is on the
faculty at the University of North Carolina
at Asheville. During the past three years,
she has studied the issues in introducing
patterns into organizations. She has also
taught patterns in industry and done
numerous other presentations on the topic.
Linda Rising has a Ph.D. from Arizona
State University in the area of object-based
design metrics. Her background includes
university teaching experience as well as
work in industry in the areas of
telecommunications, avionics, and strategic
weapons systems. She has been working
with object technologies since 1983. She is
the editor of A Patterns Handbook, The
Pattern Almanac 2000, and Design
Patterns in Communication Software.

10 Introducing Patterns (or Any New Idea) into Organizations

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 51

Sunday, Morning
Convention Ctr — Room 16
David Holmes, DSTC Pty Ltd.
Doug Lea,
State University of New York
(SUNY) at Oswego
Concurrent programming has mostly been
the domain of systems programmers rather
than application developers, but Java’s
support of concurrency has enticed many
to try their hand at concurrent
applications. However concurrent
programming poses many traps for the
unwary. This tutorial demonstrates various
design patterns and techniques for
constructing concurrent applications in
Java and for managing that concurrency.
On the language side we look at Java’s
mechanisms to support concurrent
programming. On the design side we look
at object structures and design rules that
can successfully resolve the competing
forces (safety, liveness, efficiency,
coordination, reusability) present in
concurrent software design problems.
Participants will acquire comprehensive
knowledge of the concurrency support
provided by the Java language and core
classes, as well as insight into some
threading issues within the Java libraries.
They will be exposed to a range of design
approaches to assist them in developing
safe, concurrent applications in Java and
other object-oriented languages.
Attendee Background: This tutorial
targets anyone involved, or planning to get
involved, in the development of
concurrent object-oriented applications. It
is assumed that the attendee is familiar
with basic OO concepts and has a working
knowledge of the Java programming
language.

Presenters: David Holmes is a Senior
Research Scientist at the Cooperative
Research Centre for Enterprise
Distributed Systems Technology (DSTC
Pty, Ltd.), in Brisbane, Australia. He
completed his Ph.D. in the area of
synchronization within object-oriented
systems and has been involved in
concurrent programming for a number of
years. He is a co-author of the third
edition of the Java Series book, The Java
Programming Language.
Doug Lea is a professor of Computer
Science at the State University of New
York at Oswego. He is author of the Java
Series book, Concurrent Programming in
Java: Design Principles and Patterns,
co-author of the book, Object-Oriented
System Development, and the author of
several widely used software packages, as
well as articles and reports on
object-oriented software development.

11 Introduction to Concurrent
Object-Oriented Programming in Java

SUNDAY TUTORIALS

52 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Convention Ctr — Room 19
Jim Highsmith,
Information Architects, Inc.
In the past two years, a wide range of
publications (Software Development,
IEEE Software, Cutter IT Journal,
Software Testing and Quality Engineering,
and even the Economist) have published
articles on what Martin Fowler calls the
New Methodologies. There has been a
rapidly rising interest in these new
approaches to software development such
as Extreme Programming, Scrum,
Adaptive Software Development,
Feature-Driven Development, and
Dynamic Systems Development
Methodology. Furthermore, scores of
organizations have developed their own
“lighter” approach to building software.
Recently, representatives from each of the
New Methodologies met, formed the
Agile Alliance, and developed common
purpose and principles to help others think
about software development,
methodologies, and organizations, in new
“more agile” ways. This workshop, given
by Jim Highsmith, developer of one of the
Agile Methodologies (Adaptive Software
Development), and one of the authors of
the Manifesto for Agile Software
Development, addresses key questions:
What are Agile Methodologies? What
problem domains do Agile Methodologies
address? What are the common principles
behind Agile Methodologies? What are
the similarities and differences between
the various Agile Methodologies?

Attendee Background: The tutorial is
targeted at software development
managers, project managers, and team
leaders. Basic project management
knowledge will be helpful.
Presenter: Jim Highsmith is director of
Cutter Consortium’s e-Project
Management Practice, president of
Information Architects, Inc., and author of
Adaptive Software Development: A
Collaborative Approach to Managing
Complex Systems (Dorset House, 2000).
He has 30 years experience as a
consultant, software developer, manager,
and writer. Jim has published dozens of
articles in major industry publications and
his ideas about project management in the
Internet era were featured in recent issues
of ComputerWorld and the Economic
Times in India. In the last ten years, he has
worked with both IT organizations and
software companies in the US, Europe,
Canada, South Africa, Australia, Japan,
India, and New Zealand to help them
adapt to the accelerated pace of
development in increasingly complex,
uncertain environments.

12 Agile Methodologies

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 53

Sunday, Morning
Marriott Hotel — Salon A
Markus Knasmüller, BMD Systemhaus
After solving the problems Y2K and Euro,
the last big challenges for
Cobol-programmers are over. Therefore
most of them have to look for new fields
of activity, but these are combined with
new programming techniques like
object-oriented programming. However,
introducing object-oriented programming
to old-style programmers is a rather hard
task. This tutorial shows how this job was
done at BMD Steyr, Austrians leading
producer of accountancy software. It is a
perfect support for everybody who wants
to introduce or teach object-oriented
programming. After presenting
background information why one should
change and how this change should be
accompanied, a special course for former
Cobol programmers is presented.
Experiences, as well as tips and tricks, will
round up the presentation.
Attendee Background: The participants
should have basic knowledge of
traditional programming languages like
Cobol or PL/I and should have the wish to
change to object-oriented programming.

Presenter: Markus Knasmüller is head of
the software department at BMD
Systemhaus, Austrians leading producer
of accountancy software. In this position
he was responsible for the change of 50
programmers and 5 millions lines of code
from COBOL to OOP. He is author of
various research papers and books (for
example: From COBOL to OOP, dpunkt,
2001) and has experience in teaching
object-oriented programming at the
university as well as in industry. Markus
holds a Ph.D. in computer science and a
degree in management information
systems.

13 How to Manage the Change from COBOL to OOP

SUNDAY TUTORIALS

54 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Convention Ctr — Room 21
Desmond D’Souza, Kinetium
The word “architecture” often bestows
instant importance to pretty powerpoint
drawings and vague hand waving. And
while e-business demands flexible
configuration of components and
web-services, those components and
services will only plug together if they
conform to shared “pluggable”
architecture standards. Believing
“architecture keeps designers from
needless creativity,” we outline a clear
definition of architecture and architectural
style based on UML packages, patterns,
and refinement. Elements and rules of an
architectural style are separated from the
designs which use them, and component
architectures use an abstract
component-connector model.
Attendee Background: Attendees should
be familiar with the UML.

Presenter: Desmond D’Souza is founder
and president of Kinetium. He is co-author
of Objects, Components, and Frameworks
With UML: The Catalysis Approach
(Addison Wesley 1998), and a respected
speaker internationally. He was previously
senior vice president of component-based
development at Platinum Technology and
at Computer Associates. Kinetium
provides client solutions that leverage
shareable architectures for model-driven
development and integration of systems,
with a current focus on light-weight
modeling architecture and methods.
Desmond can be reached at
dsouzad@acm.org.

14 Component and Service Architecture Modeling with UML

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 55

Sunday, Morning
Marriott Hotel — Florida Salon VI
Don Box, DevelopMentor
The Simple Object Access Protocol
(SOAP) is an XML-based protocol for
exposing servers, services, components or
objects over the web. SOAP codifies the
use of existing technologies such as XML,
XML Schema Definition (XSD) language,
and HTTP to allow code to be accessed in
an interoperable and Internet-friendly
fashion. This tutorial covers the following
topics: The XML Protocol Stack, the
XML Schema Language, HTTP Myths vs.
Reality, SOAP Encoding, SOAP Framing,
SOAP and Extensibility, Architecture of a
SOAP runtime, and Architecture of a
SOAP application
Attendee Background: Attendees should
be familiar with the basics of
object-oriented programming and
moderately comfortable with some RPC
or messaging based technology such as
CORBA, DCOM or RMI.

Presenter: Don Box is a co-founder of
DevelopMentor, a developer services
company that provides education and
support to the software industry at large.
Don’s research interests include
component software integration,
programming for concurrency, and
XML-based serialization and metadata
protocols. Don is a series editor at
Addison Wesley and is the author of
Essential COM, and a co-author of
Effective COM, and Essential XML, all
from Addison Wesley. Don is a
contributing editor and columnist at
Microsoft Systems Journal (now called
MSDN Magazine) and an occasional
contributor to XML.com. Don is also a
co-author of the Simple Object Access
Protocol specification and a member of
the W3C Schemas Working Group. Don
has a Master’s Degree in Computer
Science from the University of California
at Irvine.

15 XML, XSD, and SOAP as a Better Component Model

SUNDAY TUTORIALS

56 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Morning
Marriott Hotel — Florida Salon IV
John Vlissides, IBM T.J. Watson Research
Designing object-oriented software is
hard, and designing reusable
object-oriented software is even harder.
Experience shows that many
object-oriented systems exhibit recurring
structures or “design patterns” of
communicating and collaborating objects
that promote extensibility, flexibility, and
reusability. This tutorial describes a set of
fundamental design patterns and, through
a design scenario, demonstrates how to
build reusable object-oriented software
with them. The tutorial covers the roles
design patterns play in the object-oriented
development process: how they provide a
common vocabulary, reduce system
complexity, and how they act as reusable
architectural elements that contribute to an
overall system architecture.
Attendee Background: Attendees should
understand basic object-oriented concepts,
like polymorphism and type versus
interface inheritance, and should have had
some experience designing
object-oriented systems. No prior
knowledge of design patterns is required.
Familiarity with Java is recommended.

Presenter: John Vlissides is a member of
the research staff at the IBM T.J. Watson
Research Center in Hawthorne, NY. He
has practiced object-oriented technology
for over a decade as a designer,
implementer, researcher, lecturer, and
consultant. John is author of Pattern
Hatching, co-author of Design Patterns
and Object-Oriented Application
Frameworks, and co-editor of Pattern
Languages of Program Design 2. He has
published many articles and technical
papers on object-oriented themes in
general and design patterns in particular.
John is a columnist for Java Report and
serves as Consulting Editor of
Addison-Wesley’s Software Patterns
Series. He has a Ph.D. in Electrical
Engineering from Stanford University.

16 An Introduction to Design Patterns

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 57

Sunday, Morning
Marriott Hotel — Meeting Room 12
Fintan Culwin,
South Bank University: London
The Java Foundation Classes supply a
collection of user interface components.
This tutorial attempts to introduce a
representative selection of the most
common and useful of them, showing how
they can be combined to produce effective
user interfaces. To accomplish this
efficiently it is necessary to start with a
representation of the required behavior of
the interface and derive the detailed design
from it.
Objectives:

• provide an introductory overview of
the widgets supplied by the JFC;

• introduce the usability heuristics and
style guides that can be employed in
the detailed design of user interfaces;

• show how State Transition Diagrams
(STDs) can describe the required
behavior of an interface;

• introduce the Java event dispatch/
listener model;

• introduce and illustrate layout
management policies;

• illustrate the use of STD, Class,
Instance, Interface Layout and Object
Interaction diagram notations;

• illustrate the realization of detailed
three-layer designs in Java;

• introduce the resource management
techniques, which improve the
presentation of an interface.

Attendee Background: An intermediate
level tutorial for attendees who have an
initial familiarity with OO concepts and
wish to develop further understanding in
the context of GUI construction. Most of
the exposition is at the source code level.

Presenter: Fintan Culwin is a Reader in
Software Engineering Education at South
Bank University: London specializing in
Software Engineering and HCI,
particularly in the integration of usability
considerations in the earliest stages of
production processes. He has published
five books, including two on Java, and is
currently completing a sixth on the JFC.
He has published extensively on Internet
issues and has presented sessions on the
Web and Java at a series of international
conferences including: SIGCSE, BCS
HCI, ITiCSE, CHI and OOPSLA.

17 Producing GUIs with Java

SUNDAY TUTORIALS

58 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Afternoon
Convention Ctr — Room 16
Doug Lea,
State University of New York
(SUNY) at Oswego
David Holmes, DSTC Pty Ltd.
Concurrent programming has mostly been
the domain of systems programmers rather
than application developers, but Java’s
support of concurrency has enticed many
to try their hand at concurrent
applications. Effectively creating and
managing concurrency within an
application poses many design choices
and trade-offs. This tutorial looks at more
advanced issues in designing concurrent
applications. It describes mechanisms for
introducing concurrency into applications
(threads, message-passing, asynchronous
calls) and different models for application
architectures, such as data-flow and
event-driven designs. The tutorial also
shows how concurrency controls can be
abstracted into reusable support classes,
and finally discusses how concurrent
components and applications should be
documented. Participants will learn how
concurrent applications can be structured
in different ways and how different
mechanisms can be used to effect
concurrent behavior. They will be exposed
to a range of design patterns and
techniques for introducing and managing
concurrency within their applications and
how to create reusable concurrency
abstractions.
Attendee Background: This tutorial
targets anyone involved, or planning to get
involved, in the development of
concurrent object-oriented applications. It
is expected that the attendee is very
familiar with OO concepts and the Java
language, and has a good working
knowledge of Java’s concurrency
mechanisms.

Presenters: Doug Lea is a professor of
Computer Science at the State University
of New York at Oswego. He is author of
the Java Series book, Concurrent
Programming in Java: Design Principles
and Patterns, co-author of the book,
Object-Oriented System Development,
and the author of several widely used
software packages, as well as articles and
reports on object-oriented software
development.
David Holmes is a Senior Research
Scientist at the Cooperative Research
Centre for Enterprise Distributed Systems
Technology (DSTC Pty, Ltd.), in Brisbane,
Australia. He completed his Ph.D. in the
area of synchronization within
object-oriented systems and has been
involved in concurrent programming for a
number of years. He is a co-author of the
third edition of the Java Series book, The
Java Programming Language.

18 Designing Concurrent Object-Oriented Programs in Java

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 59

Sunday, Afternoon
Marriott Hotel — Meeting Room 11
Steve Metsker, Capital One
By learning to write parsers you learn to
bridge the gap between computers and the
users of your language. You can nestle a
new language into any niche, defining
how your users interact with computers
using text. This workshop introduces the
basics of building a language from
Sequence, Alternation, and Repetition
objects. With these three objects, you can
create any syntax-free language. In this
session you will spend a large portion of
class time writing parsers, using the tools
this workshop introduces. You will learn
when to create an XML-based language
and when to use Java. You will also learn
how to design a language and how to
generate a working parser from this
design.

Attendee Background: Attendees should
be experienced Java developers.
Presenter: Steve Metsker is a researcher
and author who explores and writes about
ways to expand the abilities of developers.
Steve’s articles have explained how to
maintain relational integrity in object
models, how to solve logic puzzles in Java,
and how the conception of “object” differs
between Plato and the OO languages.
Steve’s most recent publication is the
book, Building Parsers with Java.

Sunday, Afternoon
Convention Ctr — Room 15
Michael Two, Thoughtworks
Over the last couple of years we’ve been
building a large J2EE application. One of
the biggest lessons we’ve learned is to
follow the Extreme Programming (XP)
approach to Continuous Integration of our
250+ KLOC system. This session focuses
on how we turned a project that needed
days of fiddling around to get a build into
a project that delivers a fully tested build
every hour. We’ll go through our
automated testing process using JUnit and
Excel based acceptance test driver. We
will also talk about a set of open source
tools we have developed to automate build
processes using Ant. We will explore the
code for the tools that connect to the
source code control system, run code
generators, compile, deploy, test and
publish the build.

Attendee Background: Participants
should be familiar with Java and basic
XML syntax.
Presenter: Michael is a developer and XP
advocate at ThoughtWorks working on a
very large J2EE application using XP.
After studying physics in college he chose
a career in software once he realized that
staying up all night in an office is more fun
than staying up all night in a lab. Michael
wrote labor schedule optimization
software in C++ before joining
Thoughtworks in 1999.

19 Building Parsers with Java

20 Daily Builds Are for Wimps

SUNDAY TUTORIALS

60 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Afternoon
Marriott Hotel — Florida Salon IV
John Vlissides, IBM T.J. Watson Research
Design patterns are making the transition
from curiosity to familiarity. Now that
many people know what they are, they
want to know how best to apply them.
This tutorial shows how to leverage
patterns in the software design process. It
reveals the thinking behind pattern
application—including when not to use a
seemingly applicable pattern. It shows
how the right patterns can improve a
design and how the wrong patterns can
degrade one. Students thus learn to apply
design patterns to maximum benefit.
Attendee Background: Attendees should
be well-grounded in object technology and
should be familiar with the design patterns
in Design Patterns: Elements of Reusable
Object-Oriented Software, by Gamma, et
al. Familiarity with Java is recommended.

Presenter: John Vlissides is a member of
the research staff at the IBM T.J. Watson
Research Center in Hawthorne, NY. He
has practiced object-oriented technology
for over a decade as a designer,
implementer, researcher, lecturer, and
consultant. John is author of Pattern
Hatching, co-author of Design Patterns
and Object-Oriented Application
Frameworks, and co-editor of Pattern
Languages of Program Design 2. He has
published many articles and technical
papers on object-oriented themes in
general and design patterns in particular.
John is a columnist for Java Report and
serves as Consulting Editor of
Addison-Wesley’s Software Patterns
Series. He has a Ph.D. in Electrical
Engineering from Stanford University.

21 Designing with Patterns

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 61

Sunday, Afternoon
Marriott Hotel — Florida Salon VI
Don Box, DevelopMentor
The Common Language Runtime is a new
implementation of many existing ideas in
component technology. The CLR is a
type-centric multi-paradigm component
model and runtime that supports
object-oriented programming,
interface-based programming, and
aspect-oriented programming. This
tutorial covers the following topics:
Managed Types Vs. Unmanaged Types,
Managed Execution Vs. Unmanaged
Execution, Programming Language vs.
The Runtime, The CLR Type System,
Loading and Linking, Runtime Type
Management, Context and Remoting, and
Web Services
Attendee Background: Attendees should
be familiar with the basics of
object-oriented programming and
moderately comfortable with
systems-programming issues such as
thread and process management.

Presenter: Don Box is a co-founder of
DevelopMentor, a developer services
company that provides education and
support to the software industry at large.
Don’s research interests include
component software integration,
programming for concurrency, and
XML-based serialization and metadata
protocols. Don is a series editor at
Addison Wesley and is the author of
Essential COM, and a co-author of
Effective COM, and Essential XML, all
from Addison Wesley. Don is a
contributing editor and columnist at
Microsoft Systems Journal (now called
MSDN Magazine) and an occasional
contributor to XML.com. Don is also a
co-author of the Simple Object Access
Protocol specification and a member of
the W3C Schemas Working Group. Don
has a Master’s Degree in Computer
Science from the University of California
at Irvine.

22 The .NET Framework:
The Common Language Runtime and C#

SUNDAY TUTORIALS

62 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Afternoon
Marriott Hotel — Meeting Room 12
Richard Jones, University of Kent
Eric Jul, University of Copenhagen
This tutorial presents the issues facing
modern high performance garbage
collectors and examines the approaches
taken by state of the art garbage collectors.
Participants will gain a deeper insight into
the operation of modern, high
performance garbage collectors. The
tutorial will enable participants to evaluate
the benefits and costs of such garbage
collection algorithms, to understand the
implications for their code and to make
informed choices between collectors.
Attendee Background: Participants will
be experienced programmers familiar with
basic garbage collection technology (for
example having attended the introductory
GC tutorial — although there would be
some overlap). Basic knowledge of OO
implementation would be useful but not
essential.

Presenters: Richard Jones is a Senior
Lecturer and Deputy Director of the
Computing Laboratory at the University
of Kent. He is the prime author of the book
on Garbage Collection. His interests
include programming languages and their
implementation, storage management and
distributed systems. He is a member of the
Steering Committee of the International
Symposium on Memory Management and
was Programme Chair for ISMM‘98. He
has presented several tutorials at
OOPSLA and ECOOP.
Eric Jul is an Associate Professor and
Head of the distributed systems group at
DIKU, the Dept. of Computer Science,
University of Copenhagen. He is
co-designer and principal implementer of
the Emerald distributed object-oriented
programming language. His interests
include distributed, OO languages,
operating systems support including
distributed storage management and
object-oriented design and analysis. He
was Programme Chair for ECOOP‘98. He
has presented tutorials regularly at
OOPSLA and ECOOP

23 Garbage Collection

TUTORIALS SUNDAY

oopsla.acm.org OOPSLA 2001 Conference 63

Sunday, Afternoon
Marriott Hotel — Florida Salon V
Alistair Cockburn,
Humans and Technology
This tutorial is a chance for practiced use
case writers to gather and ask the hard
questions. What is the difference between
Extends and Includes? What is the
difference between a business use case
and a system use case? When do we stop
drawing pictures and start writing text?
What expertise is required in the use case
writing team? How do we control the
mixed levels of writing across people?
Where do I put the UI design, the data
descriptions and all the other
requirements? Can non-technical people
write the use cases? Who reviews the use
cases? How do we keep use cases writers
from infringing on design? The tutorial is
structured as part lecture, part workshop,
and part open question-and-answer. The
lecture introduces the new Stakeholders &
Interests model of use cases, along with
the notions of different design scopes and
goal levels. The workshop portion gives
the attendees a chance to try their hands at
resolving certain kinds of frequently
occurring problems, to sharpen their skills.
The open question-and-answer section
allows the attendees to ask questions
currently plaguing them at work, and even
trade answers and experiences amongst
themselves.

Attendee Background: Attendees must
have written some use cases and be
familiar with basic use case concepts.
Presenter: Alistair Cockburn is a highly
regarded instructor and is known as one of
the premier experts on use cases. His
book, Writing Effective Use Cases, set the
standard in the area and was nominated
for Software Development’s Jolt book
award in 2001. Alistair has taught use
case writing since 1994, and has also
acted as consultant on project
management, object-oriented design, and
methodology to the Central Bank of
Norway, the IBM Consulting Group, and
the First Rand Bank of South Africa.
Materials that support his workshops can
be found at
http://members.aol.com/acockburn,
http://crystalmethodologies.org and
http://usecases.org.

24 Advanced Use Case Writing

SUNDAY TUTORIALS

64 OOPSLA 2001 Conference oopsla.acm.org

Sunday, Afternoon
Convention Ctr — Room 21
Desmond D’Souza, Kinetium
The UML can be used in a simple and
consistent way to (a) use a “plug-in”
framework approach from business and
requirements patterns, through
architecture and design patterns, to code,
(b) treat “objects” and “use-cases” in a
fractal manner, from business to code,
with patterns of refinement, (c) specify
and design components using “types” and
“collaborations,” and (d) define
component architectures based on an
extensible “kit” of architectural modeling
elements. This tutorial shows how UML
pattern models can be used in a fractal
approach to modeling and design.
Attendee Background: Attendees should
be familiar with the UML.

Presenter: Desmond D’Souza is founder
and president of Kinetium. He is co-author
of the CATALYSIS Method (Addison
Wesley, 1998), and a respected speaker
internationally. He was previously senior
vice president of component-based
development at Platinum Technology and
at Computer Associates. Kinetium
provides client solutions that leverage
shareable architectures for model-driven
development and integration of systems,
with a current focus on light-weight
modeling architecture and methods.
Desmond can be reached at
dsouzad@acm.org.

25 Fractal Patterns and Frameworks in UML
— Towards UML 2.0?

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 65

MONDAY

Monday, Full Day
Convention Ctr — Room 20
Gregor Kiczales,
Xerox PARC,
University of British Columbia
Erik Hilsdale, Xerox PARC
Aspect-oriented programming (AOP) is a
technique for improving separation of
concerns in software design and
implementation. AOP works by providing
explicit mechanisms for capturing the
structure of crosscutting concerns.
AspectJ is a seamless aspect-oriented
extension to Java™. It can be used to
cleanly modularize the crosscutting
structure of concerns such as exception
handling, multi-object protocols,
synchronization, performance
optimizations, and resource sharing.
When implemented in a
non-aspect-oriented fashion, the code for
these concerns typically becomes spread
out across entire programs. AspectJ
controls such code-tangling and makes the
underlying concerns more apparent,
making programs easier to develop and
maintain. This tutorial will introduce
aspect-oriented programming and show
how to use AspectJ to implement
crosscutting concerns in a concise,
modular way. We will use numerous
examples to develop participants’
understanding of aspect-oriented
programming through AspectJ. We will
also demonstrate AspectJ’s integration
with IDEs such as JBuilder 4.0 and
Forte4J, and emacs. AspectJ is freely
available at http://www.aspectj.org
Attendee Background: Attendees should
have experience doing object-oriented
design and implementation, and should be
able to read Java code. No prior
experience with aspect-oriented
programming or AspectJ is required.

Presenters: Gregor Kiczales is Professor
of Computer Science and Xerox/Sierra
Systems/NSERC Chair of Software Design
at the University of British Columbia. He
is also a Principal Scientist at the Xerox
Palo Alto Research Center, where he leads
the group that has developed
aspect-oriented programming and
AspectJ. The focus of his research is
enabling programmers to write programs
that, as much as possible, look like their
design. Prior to developing
aspect-oriented programming he worked
on open implementation, metaobject
protocols, and the CLOS object-oriented
programming language. He is co-author
of The Art of the Metaobject Protocol, a
key work in computational reflection. He
has given numerous invited talks, lectures,
and tutorials at conferences, universities,
and in industry.
Erik Hilsdale is a member of the research
staff at Xerox’s Palo Alto Research Center.
As a member of the AspectJ project team,
he focuses on language design, pedagogy,
and compiler implementation. He has
written several conference and workshop
publications in programming languages.
He is an experienced and energetic
instructor in programming languages with
a long background with AspectJ.

26 Aspect-Oriented Programming with AspectJ™

MONDAY TUTORIALS

66 OOPSLA 2001 Conference oopsla.acm.org

Monday, Full Day
Convention Ctr — Room 13
Jim Doble, Tavve Software Company
Gerard Meszaros, Clearstream Consulting
Ron Crocker, Motorola, Inc.
Explore the challenges associated with the
development of large-scale, real-life,
proprietary, object-oriented, distributed,
embedded, and multi-tier software
systems, and discuss the path of a new
professional discipline: the software
architect. The software architect needs to
be able to organize software systems, and
make strategic design decisions, to
achieve business goals related to system
availability, security, scalability,
survivability, long-lived flexibility,
large-scale granularity, data quality and
maintenance, system metrics and reports,
packaging and delivery mechanisms.
These issues are not commonly explored
via UML or other popular modeling
approaches, but are nevertheless critical to
the success of modern software
development projects. The teaching style
for this tutorial is case-driven, and
hands-on in nature. Attendees will be
divided into teams to work on architecture
problems. Throughout the day, working
sessions will be intermixed with instructor
lectures, to achieve a participatory
learning experience. The goal is that
attendees will learn both from the
instructors and from each other. As a
result, the attendee is assumed to have
experience building at least one real-life
software system of substantial size.
Attendee Background: Attendees should
either be currently working as software
architects, trying to establish a software
architecture practice within their
company, or working on software systems
where they believe an increased emphasis
on architecture is needed. Attendees
should have experience building at least
one real-world software system of
substantial size.

Presenters: Jim Doble has worked as
software developer, manager, and
architect within the telecommunications
industry for over 19 years. He started his
career with Nortel Networks, primarily
working on central office switching
systems, spent two years with Allen
Telecom developing cellular infrastructure
products, recently worked for Motorola,
Inc. on software architectures for cellular
phones, and is currently employed as a
principal engineer at Tavve Software
Company, developing network
management solutions. In addition to
architecture, Jim’s technical interests
include patterns, prototyping, and tools
development.
Gerard Meszaros is an acknowledged
expert in software architecture and
patterns. He has led or participated in
workshops on software architecture at
OOPSLA since 1994. He has published
patterns in the first three volumes of
“Pattern Languages of Program Design.”
His clients include Nova Gas
Transmission, Tandem Computers, TELUS
Communications, Digital Technics,
Intelligent Databases, TransCanada
Pipelines, DMR, and IBM. He has been
invited to speak or participate in panels at
OOPSLA, PLOP, and other national and
international conferences.
Ron Crocker is a Senior Member of
Technical Staff in the Network and
Advanced Technology department in
Motorola, Inc. where he is responsible for
cellular system architecture and design. He
has over 15 years of experience with
object-oriented technologies, starting as a
C++ guinea pig.

27 Software Architecture:
It’s What’s Missing From OO Methodologies

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 67

Monday, Full Day
Convention Ctr — Room 22
Bruce Anderson,
IBM Component Technology Services
Paul Fertig, IBM Global Services
This tutorial is a working session to help
you produce effective use cases for
functional requirements. We will go
beyond simple examples to deal with
many of the issues you will face (and we
have faced!) in dealing with different
kinds of systems, clients, and developers.
We will look at some specific topics, such
as how use cases relate to business process
models, using generic use cases,
distinguishing envisioning from
designing, effort estimation from use
cases, and system exceptions. We will also
look at the process of running use case
workshops, and at the relation between
use cases and other requirements artefacts
such as the business rules catalog and
non-functional requirements. Attendees
are encouraged to bring specific problems
for discussion, supported by shareable
documents if possible.
Attendee Background: You should have
written some use cases and have
experience of producing requirements
documents. Knowledge of OO would be
useful but is not essential.

Presenters: Bruce Anderson, Senior
Consultant in IBM Component
Technology Services, has been using use
cases in his consulting work for several
years. He has worked with clients in the
banking, insurance, petroleum, and
telecom industries. Bruce served on the
OOPSLA‘98 use case panel, and taught
tutorials on use cases at OOPSLA in 1999
and 2000, the latter with Paul.
Paul Fertig, Senior IT Architect in IBM
Business Innovation Services, has been
responsible for requirements gathering
and architecture in large services
contracts for a number of years. He has
worked with clients in the telecom, retail
and investment banking industries. Paul
co-authored a book on OO applications
which has been a key influence on IBM’s
world-wide software development method.

28 Improving Your Use Cases

MONDAY TUTORIALS

68 OOPSLA 2001 Conference oopsla.acm.org

Monday, Full Day
Convention Ctr — Room 15
Douglas Schmidt,
University of California, Irvine
Developing software for distributed
systems that effectively utilizes
concurrency over high-speed, low-speed,
and mobile networks is a complex task.
This tutorial describes how to apply
patterns and frameworks to alleviate the
complexity of developing concurrent and
distributed communication software.
These patterns and framework
components have been used successfully
by the speaker on production
communication software projects at
hundreds of commercial companies for
telecommunication systems, network
management for personal communication
systems, Web-based content delivery
systems, electronic medical imaging
systems, real-time aerospace systems,
distributed interactive simulations, and
automated stock trading. The tutorial
illustrates by example how to significantly
simplify and enhance the development of
communication software that effectively
utilizes concurrency and distribution via
the use of:

• OO design techniques — such as
patterns, layered modularity, and
data/control abstraction

• OO language features — such as
abstract classes, inheritance, dynamic
binding, and parameterized types

• Middleware — such as
object-oriented frameworks for
infrastructure middleware (such as
ACE) and distribution middleware
(such as CORBA ORBs)

The material presented in this tutorial is
based on the book, Pattern-Oriented
Software Architecture: Patterns for
Concurrent and Distributed Objects
(Wiley 2000), which is the second volume
in the highly acclaimed Pattern-Oriented
Software Architecture (POSA) series.

Attendee Background: The tutorial is
intended for software developers who are
familiar with general object-oriented
design and programming techniques (such
as patterns, modularity, and information
hiding) fundamental OO programming
language features (such as classes,
inheritance, dynamic binding, and
parameterized types), basic systems
programming concepts (such as
process/thread management,
synchronization, and interprocess
communication), and networking
terminology (such as client/server
architectures and TCP/IP).
Presenter: Dr. Schmidt is an Associate
Professor in the Electrical and Computer
Engineering Department at the University
of California, Irvine. He is currently also
serving as a program manager the DARPA
Information Technology Office (ITO)
where he is leading the national research
effort on distributed object computing
middleware. His research focuses on
design patterns, implementation, and
experimental analysis of object-oriented
techniques that facilitate the development
of high-performance, real-time distributed
object computing middleware on parallel
processing platforms running over
high-speed networks and embedded
system interconnects. Dr. Schmidt is an
internationally recognized and widely
cited expert on distributed object
computing patterns, middleware
frameworks, and Real-time CORBA, and
has published widely in top IEEE, ACM,
IFIP, and USENIX technical journals,
conferences, and books. His publications
cover a range of experimental systems
topics including high-performance
communication software systems, parallel
processing for high-speed networking
protocols, real-time distributed object
computing with CORBA, and
object-oriented design patterns for
concurrent and distributed systems.

29 Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 69

Monday, Full Day
Marriott Hotel — Meeting Room 12
Serge Demeyer, University of Antwerp
Stéphane Ducasse, University of Berne
Surprising as it may seem, many of the
early adopters of the object-oriented
paradigm already face a number of
problems typically encountered in
large-scale legacy systems. Software
engineers are now confronted with
millions of lines of industrial source code,
developed using object-oriented design
methods and languages of the late 80s.
These systems exhibit a range of
problems, effectively preventing them
from satisfying the evolving requirements
imposed by their customers. This tutorial
will share our knowledge concerning the
reengineering of object-oriented legacy
systems. We will draw upon our
experiences with the FAMOOS project, to
show you techniques and tools we have
applied on real industrial OO systems to
detect and repair problems. In particular,
we will discuss issues like tool integration,
design extraction, metrics, refactoring,
and program visualisation.
Attendee Background: Participants
should have practical programming
experience in at least one OO language
(Smalltalk, C++, Java, Eiffel, ...).
Familiarity with UML is useful, though
not required.

Presenters: Serge Demeyer is a professor
at the University of Antwerp (Belgium).
He served as technical leader for the
FAMOOS project and as such has been
involved in the organization of several
workshops (at ECOOP and ESEC)
concerning object-oriented reengineering.
He has given tutorials on Object-Oriented
Reengineering at both OOPSLA and
ECOOP and is currently writing a book
reporting on his experience.
Stéphane Ducasse is a post doctoral
researcher at the Software Composition
Group in Berne (Switzerland). He served
as technical leader for the FAMOOS
project and as such has been involved in
the organization of several ECOOP
workshops concerning object-oriented
reengineering. He has given tutorials on
Object-Oriented Reengineering at both
OOPSLA and ECOOP and is currently
writing a book reporting on his
experience.

30 Object-Oriented Reengineering

MONDAY TUTORIALS

70 OOPSLA 2001 Conference oopsla.acm.org

Monday, Morning
Marriott Hotel — Florida Salon VI
Frank Buschmann, Siemens AG, Germany
In this tutorial we present in detail a part
of a concrete real-world system and how it
is designed with patterns: the
representation of physical storage in a
warehouse management system as well as
the client interface to this subsystem. Step
by step we will re-play the process of the
system’s construction. We discuss the
design problems that occur, present the
patterns that could help in solving these
problems, discuss design alternatives, and
show how we actually applied the patterns
we selected. By this we will see how the
design of the system slowly grows and
evolves towards the final architecture. We
will also see and discuss how patterns are
applied in practice and how they help
building high-quality software with
predictable properties. The tutorial
concludes with a summary of our
experiences from several projects in which
we applied patterns: what worked, what
could be improved, and what did we learn.
Attendee Background: Sound
knowledge in object technology, basic
knowledge of UML notation, basic
knowledge of the pattern concept

Presenter: Frank Buschmann is software
engineer at Siemens Corporate
Technology in Munich, Germany. His
interests include object technology,
frameworks, and patterns. Frank has been
involved in many software development
projects. He is leading Siemens’ pattern
research activities. Frank is co-author of
Pattern-Oriented Software Architecture —
A System of Patterns and Pattern-Oriented
Software Architecture — Patterns for
Concurrent and Networked Objects.

31 Patterns at Work

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 71

Monday, Morning
Convention Ctr — Room 19
Alistair Cockburn,
Humans and Technology
The methodology of an organization is a
social construction that includes the roles,
skills, teaming, activities, techniques,
deliverables, standards, habits and culture
of the organization as it develops software.
This tutorial starts with language and
constructs needed to evaluate, compare,
and construct methodologies. These
include precision, accuracy, tolerance,
relevance, and scale, along with the nine
basic elements of a methodology. Several
examples of effective, lightweight, and
real methodologies are given, along with
commentary on the social setting for each.
The tutorial examines the conditions
suited to shifting from a lighter to a
heavier methodology and the penalty for
doing so. The tutorial ends with the
presentation of a small family of agile
methodologies, optimized for
productivity, making maximum use of
human, face-to-face communication.
Considerations about success and failure
in affecting culture are visited again at the
end. Learn to identify and diagnose the
parts of your organization’s methodology,
and learn ways to make it more effective.
Attendees should have significant
software team experience, preferably but
not necessarily OO, and must have used at
least one methodology and thought about
others.
Attendee Background: Experienced
developers, team leaders, methodologists,
and technology selectors trying to choose
or design a methodology for their
organization.

Presenter: Alistair Cockburn, founder of
Humans and Technology, was special
advisor to the Central Bank of Norway for
object technology and software project
management, and the designer of the IBM
Consulting Group’s first OO development
methodology. His books, Surviving
Object-Oriented Projects and Writing
Effective Use Cases, have garnered praise
from practitioners for being pragmatic
and readable. He is an expert on use
cases, object-oriented design, project
management, and software
methodologies. He has been the technical
design coach and process consultant on
projects ranging in size from 3 to 90
people. Materials that support Alistair’s
workshops can be found at
http://members.aol.com/acockburn and
http://crystalmethodologies.org.

32 Designing an Agile Methodology

MONDAY TUTORIALS

72 OOPSLA 2001 Conference oopsla.acm.org

Monday, Morning
Convention Ctr — Room 21
Casey Chesnut, iigo
This tutorial will demonstrate Web
Services in the .NET Framework. A Web
Service is application logic accessible
through standard web protocols and data
formats. They are an integral part of the
.NET Framework. The tutorial will be
divided into 2 parts. The first part will
focus on how to expose a Web Service for
clients to access, and the second part will
cover how to consume the exposed Web
Service from a variety of clients. Some
time will be spent exploring applicable
architectures and modeling techniques for
Web Services. Throughout the
presentation, non-functional requirements
will also be considered (e.g. security,
authentication, performance, etc.) The
tutorial’s objective is to give the audience
an intermediate-level introduction to Web
Services development in the .NET
Framework, as well as design decisions
that are pertinent to the programming
model. The audience will be exposed to
XML, SOAP, UDDI, WSDL, ASP.NET,
and C#. This tutorial will be presentation
based with code examples.
Attendee Background: The target
audience will be Software Engineers,
although Management will be interested to
get a glimpse at Web Services and the
different business models that are made
possible. Basic understanding of Internet
technologies will be helpful.

Presenter: Casey Chesnut is Vice
President of Technology for iigo, Inc. He
specializes in cutting-edge technologies
and has most recently been concentrating
on Web Services in the .NET Framework.
He holds two Masters degrees in software
engineering.

33 Exposing and Consuming Web Services with .NET

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 73

Monday, Morning
Marriott Hotel — Salon A
Michael Stal, Siemens AG, Germany
Due to the importance of distribution and
object technologies, infrastructures for
distributed object computing and
component-based middleware have
become commonplace. However, it is not
sufficient to just read the specification of
standards such as Java RMI, EJB, or
CORBA, and then build applications
using these standards. On the one hand,
the transparency provided by these
platforms helps developers to master the
complexity of building distributed
systems, but on the other hand, it is
necessary to know the infrastructure’s
internal architectural design to leverage it
efficiently. Unfortunately, the architectural
principles behind infrastructures are not
documented anywhere. Here, patterns
come to our rescue. They do not only
enable the solution of recurring problems
in software development, but also help us
to look inside existing software in order to
understand it and leverage it efficiently.
Thus, the goal of the tutorial is to show the
basic principles behind distributed object
computing and component-based
middleware. Patterns from existing pattern
books will be introduced step-by-step to
reveal the overall architecture of these
infrastructures. These patterns will not
only help to understand middleware, but
will also be applicable for the
development of any distributed systems.
In the first part of the tutorial we use
patterns to explain the basic architecture
of object-oriented middleware from a user
perspective. In the second part we will
dive into the internals of middleware
frameworks.
Attendee Background: Attendees should
be familiar with distributed systems. They
should have basic experience with Java
and C++. Knowledge with patterns is not
required.

Presenter: Michael Stal works as a Senior
Principal Engineer for Siemens Corporate
Technology where he is head of the
Middleware & Application Integration
Team. His main research areas include
Object-Oriented Middleware, Patterns,
Software Architecture, Web Technologies,
and Component-based Software
Development. Michael is Siemens
representative at the OMG, and former
member of the C++ standardisation
working group X3J16. He is co-author of
the books, Pattern-Oriented Software
Architecture - A System of Patterns and
Pattern-Oriented Software Architecture -
Vol. 2: Patterns for Concurrent and
Networked Objects. In addition, he serves
as editor-in-chief of the German Java
Spektrum magazine. Michael has
published articles in many magazines and
given talks at many conferences
world-wide.

34 Efficient Architectures for Object-Oriented
Component-Based Middleware

MONDAY TUTORIALS

74 OOPSLA 2001 Conference oopsla.acm.org

Monday, Morning
Marriott Hotel — Florida Salon IV
William Wake, Capital One
Steve Metsker, Capital One
Extreme Programming (XP) is an agile
software development method that
emphasizes ongoing user involvement,
automated testing, and pay-as-you-go
design. This tutorial introduces XP
practices through hands-on exercises:

• Planning Game: User Stories, On-Site
Customer

• Programming Game: Test-First
Programming, Unit Testing, Pair
Programming

• Refactoring Game: Code Smells,
Once-and-Only-Once, Refactoring

The exercises are paper-based and use a
fireworks factory as their domain. Student
volunteers help play the part of the
customer and the unit testing framework.
As a participant, you will help create a live
simulation of several key practices of
Extreme Programming.
Attendee Background: Some familiarity
with object-oriented concepts is helpful;
no prior experience with XP is needed.

Presenters: William Wake is interested in
XP, patterns, human-computer interaction,
and information retrieval. He is the author
of Extreme Programming Explored and
the inventor of the Test-First Stoplight and
the XP Programmer’s Cube.
Steve Metsker is a researcher and author
who explores and writes about ways to
expand the abilities of developers. Steve’s
articles have explained how to maintain
relational integrity in object models, how
to solve logic puzzles in Java, and how the
concept of “object” differs between Plato
and the OO languages. Steve’s most recent
publication is the book, Building Parsers
with Java.

35 Extreme Programming Live!

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 75

Monday, Morning
Marriott Hotel — Florida Salon V
Kyle Brown, IBM
When people view the J2EE (Java 2
Platform, Enterprise Edition)
specifications, too often all they see is a
“bag of APIs” without a way to
understand how the specifications work
together in an application server. In this
tutorial we will examine some template
architectures for successful J2EE systems
and show how a common set of design
patterns can be applied to help designers
navigate through the J2EE problem space.
We will examine common client-side
pitfalls and discuss the pros and cons of
different design options, discuss how Java
Servlets and JavaServerPages (JSPs) can
work with and within technologies like
Apache Struts, XML, and Extensible Style
Sheets (XSL), and discuss how EJB
(Enterprise JavaBean) systems can be
structured to maximize component reuse
while reducing wasted programmer effort.
Attendee Background: This tutorial is
targeted to Java programmers and
designers, with at least some exposure to
J2EE technologies (a reading knowledge
of the J2EE specification and the
associated API specifications will be
sufficient). Programmers who have had
experience with one or more of the J2EE
technologies will gain the most from this
review of how all the technologies fit
together and how problems are solved
using the entire J2EE framework.

Presenter: Kyle Brown is an Executive
Java Architect with IBM’s WebSphere
Services unit. He is an experienced
presenter at OOPSLA and other industry
conferences. He has over twelve years of
experience with object-oriented systems,
and has been specializing in Enterprise
Java systems since 1997. He is a
co-author of The Design Patterns
Smalltalk Companion and Enterprise Java
Programming with IBM WebSphere, both
published by Addison Wesley Longman.

36 Patterns and Architectures for J2EE Systems

MONDAY TUTORIALS

76 OOPSLA 2001 Conference oopsla.acm.org

Monday, Morning
Convention Ctr — Room 16
Martin Fowler, ThoughtWorks, Inc.
Josh MacKenzie, ThoughtWorks, Inc.
Almost every expert in object-oriented
development stresses the importance of
iterative development. As you proceed
with iterative development, you need to
add function to the existing code base. If
you are really lucky, that code base is
structured just right to support the new
function while still preserving its design
integrity. Of course, most of the time we
are not lucky, and the code does not quite
fit what we want to do. You could just add
the function on top of the code base. But
soon this leads to applying patch upon
patch, making your system more complex
than it needs to be. This complexity leads
to bugs, and cripples your productivity.
Refactoring is all about how you can avoid
these problems by modifying your code in
a controlled manner. Done well, you can
make far-reaching changes to an existing
system quickly, and without introducing
new bugs. You can even take a procedural
body of code and refactor it into an
effective object-oriented design. With
refactoring as part of your development
process you can keep your design clean,
make it hard for bugs to breed and keep
your productivity high. In this tutorial
we’ll show you an example of how a lump
of poorly designed code can be put into
good shape. In the process we’ll see how
refactoring works, demonstrate a handful
of example refactorings, and discuss the
key things you need to do to succeed. This
tutorial is an introduction to refactoring.
No prior refactoring experience is
assumed and the content covers much the
same ground as opening a couple of
chapters of the refactoring book.
Attendee Background: developers and
analysts

Presenters: Martin Fowler is the Chief
Scientist for ThoughtWorks Inc., an
Internet professional services provider
specializing in the delivery of highly
strategic B2B e-Commerce solutions. For
a decade he was an independent
consultant pioneering the use of objects in
developing business information systems.
He’s worked with technologies including
Smalltalk, C++, object and relational
databases, and EJB with domains
including leasing, payroll, derivatives
trading and healthcare. He is particularly
known for his work in patterns, the UML,
lightweight methodologies, and
refactoring. He has written four books:
Analysis Patterns, Refactoring, the award
winning UML Distilled, and Planning
Extreme Programming.
Josh MacKenzie has been with
ThoughtWorks for three years, serving as
a developer, architect, and team lead. He
has worked on projects in equipment
leasing, insurance, and industrial supply
and purchasing. These projects have
utilized a wide variety of technologies,
including J2EE, XML, Forte, and LDAP.
Josh has also been instrumental in the
exploration and adoption of agile
methodologies on ThoughtWorks’
projects. Prior to ThoughtWorks, Josh
served as a Senior Engineer for Motorola,
Inc. Energy Systems, where he designed
and developed real-time testing and
analysis software for electrochemical
capacitors. He holds a B.A. in Physics and
Mathematics, and an almost-M.S. in
Chemical Engineering. Josh presented
tutorials at JavaCon2000 on
“Refactoring” and “Business Objects in
J2EE.”

37 Refactoring: Improving the Design of Existing Code

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 77

Monday, Afternoon
Marriott Hotel — Salon A
Craig Chambers,
University of Washington
How are object-oriented languages
implemented? What features of
object-oriented languages are expensive?
What compiler optimizations have been
developed to make object-oriented
languages more efficient? This tutorial
addresses these questions. After
identifying the main features of
object-oriented languages that are
challenging to implement efficiently, three
classes of implementation techniques are
presented. First, run-time system
techniques such as virtual function
dispatch tables (including complications
due to multiple inheritance and virtual
inheritance) and inline caches are
described. Second, static intra- and
interprocedural analyses are discussed that
seek to identify at compile-time the
possible classes of message receivers, in
order to reduce or eliminate the overhead
of dynamic binding. Third, ways in which
dynamic execution profiles can be
exploited to complement static analysis
techniques are described. To assess the
relative importance of the techniques,
empirical measurements of the
effectiveness of many of these techniques,
as implemented in the Vortex optimizing
compiler, are presented for large
benchmarks written in Java, C++, and
Cecil.
Attendee Background: Attendees should
be familiar with the features of
object-oriented languages and also with
traditional compiler techniques such as
procedure inlining and data flow analysis.

Presenter: Craig Chambers has been
researching object-oriented language
design and implementation since 1987,
with publications in OOPSLA, ECOOP,
ISOTAS, PLDI, POPL, PEPM, and
TOPLAS on the topic. For his Ph.D. thesis
at Stanford, he developed the first efficient
implementation of the Self language, using
optimizing dynamic compilation.
Chambers is currently an Associate
Professor of Computer Science &
Engineering at the University of
Washington, where he designed the Cecil
language, heads the Vortex
whole-program optimizing compiler
project, and co-leads the DyC staged
dynamic compilation project.

38 Efficient Implementation of Object-Oriented
Programming Languages

MONDAY TUTORIALS

78 OOPSLA 2001 Conference oopsla.acm.org

Monday, Afternoon
Marriott Hotel — Florida Salon V
Ivar Jacobson, Rational
Gunnar Övergaard, Jaczone AB
It has never been so hard to develop good
software as today. Developers need more
knowledge and skill than ever before.
They need to be skilled in programming
languages (e.g. Java, C++), system
software platforms (.NET, J2EE), XML,
middleware (WebSphere, Logicworks,
etc.), the Unified Modeling Language, the
Rational Unified Process, web
architectures, etc. And they need to learn
about these technologies faster than ever
with almost no time for training and
education. If they don’t, their only rescue
is to find shortcuts, use lightweight
methodologies, and ignore well-proven
best practices. And as usual, quality will
suffer. There is another way. In this
tutorial we will discuss how software
agents can be used to reduce the gap
between the individual developers’
knowledge and what is needed. For
instance, agents can minimize the process
adoption thresholds so that the complexity
of a process can become transparent to the
developers and thus be perceived as
lightweight. The individual developer will
focus on the problem solving and creative
part, letting the agents do the work that
can be guided by formalized knowledge.
We will discuss the process of formalizing
knowledge as rules, how these rules will
trigger in a given context, and how the
agents can propose resolutions. Examples
will be used to demonstrate the feasibility
of agents in software development.
Attendee Background: System analysts,
project leaders, software developers,
people interested in methodologies,
process development and software
development tools Required experience:
Some experience with software
development and UML.

Presenters: Dr. Ivar Jacobson serves as
Vice President of Business Engineering for
Rational Software Corp. Dr. Jacobson is the
founder of Objectory AB in Sweden, which
merged with Rational Software in 1995. He
was one of the three original designers of
the UML in 1997. He is the principal author
of three influential and best-selling books,
Object-Oriented Software Engineering—A
Use Case Driven Approach, The Object
Advantage—Business Process
Reengineering with Object Technology,
Software Reuse: Architecture, Process, and
Organization for Business Success, and The
Unified Software Development Process.
Gunnar Övergaard serves as Vice President
Content Development at Jaczone AB, and
holds a Ph.D. in Computer Science. Gunnar
has worked with process development,
consulting, and education in the
object-oriented field since the mid-1980s.
Gunnar worked as VP of process
development at Objectory in the critical
development of the origin to the Rational
Unified Process. He has participated
actively in the development of UML since
1995.

39 Making the Software Process Transparent by
Using Intelligent Agents

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 79

Monday, Afternoon
Marriott Hotel — Florida Salon VI
Alistair Cockburn,
Humans and Technology
After a decade of OO projects, what have
we learned? Develop in increments to
form a habit of delivering; make sure you
have a decent executive sponsor, project
manager and technical leader; get training;
and don’t forget the lessons of the last four
decades. This tutorial walks through
appropriate expectations, project setup,
technology selection, working with the
domain model, with increments and
iterations, prototypitis and the death spiral,
setting up teams, handling training,
expanding, project management patterns
and advice from hindsight. It includes
over 60 specific strategies, truths, fixes,
and recommendations. The tutorial is
liberally sprinkled with case histories and
insights from the participants themselves.
It overlaps heavily with the book,
Surviving Object-Oriented Projects. The
tutorial is for anyone wanting to learn
ways to get their OO project out of the
mire, or avoid the mire in the first place.
Attendee Background: Neither being a
OO novice nor an OO expert will interfere
with the tutorial material. The only
requirements is an interest in what makes
a project work well.

Presenter: Alistair Cockburn, founder of
Humans and Technology, was special
advisor to the Central Bank of Norway for
object technology and software project
management, and the designer of the IBM
Consulting Group’s first OO development
methodology. His books, Surviving
Object-Oriented Projects and Writing
Effective Use Cases, have garnered praise
from busy practitioners for being
pragmatic and readable. He is an expert
on use cases, object-oriented design,
project management, and software
methodologies. He has been the technical
design coach and process consultant on
projects ranging in size from 3 to 90
people. Materials that support Alistair’s
workshops can be found at
http://members.aol.com/acockburn and
http://crystalmethodologies.org.

40 Surviving Object-Oriented Projects

MONDAY TUTORIALS

80 OOPSLA 2001 Conference oopsla.acm.org

Monday, Afternoon
Convention Ctr — Room 21
Joshua Kerievsky, Industrial Logic
While Software Patterns are undeniably
powerful design aids, many programmers
tend to overuse them, prematurely
introduce them, or implement them in
unnecessarily heavyweight ways.
Refactoring to Patterns encourages a
simpler, more disciplined approach to
using Patterns, based on the philosophy of
Extreme Programming. Using this
approach, programmers wait for the right
time to refactor a Pattern into a system and
do so using the simplest possible Pattern
implementations. In this tutorial, we will
examine five Design Patterns and five
cases where we might refactor these
Patterns into Java code. During the
process, we will investigate when it makes
sense to refactor to a Pattern, and what are
simple implementations of each Pattern
we add.
Attendee Background: This is an
intermediate-level tutorial. Attendees will
be expected to understand Java and have
basic exposure to Design Patterns.

Presenter: Programming professionally
since 1987, Joshua Kerievsky is the
founder and chief programmer of
Industrial Logic, Inc.
(http://industriallogic.com), a company
specializing in Patterns and XP. As an XP
Coach, mentor, and leader of intensive
workshops, Joshua helps organizations
learn and use the software industry’s very
best practices. Joshua can be reached at
Joshua@industriallogic.com.

41 Refactoring to Patterns

TUTORIALS MONDAY

oopsla.acm.org OOPSLA 2001 Conference 81

Monday, Afternoon
Convention Ctr — Room 19
Luke Hohmann, Independent Consultant
Most books and lectures on software
architecture focus on technical issues.
This is clearly necessary, because software
architecture must deal with technical
concerns. A smaller subset focuses on
other important issues such as
“peopleware.” This is clearly necessary,
for software systems are built by people to
satisfy one or more needs. Unfortunately,
few lectures focus on the business realities
of software architecture. This tutorial
addresses these business realities, for
without addressing them your architecture
will surely fail.
Attendee Background: Participants
should have been a technical lead, first
line manager, senior developer, or
software architect for at least one project
(including the one they’re working on
right now, if this is their first).

Presenter: Luke Hohmann is an
independent consultant committed to
coaching his clients to greater levels of
performance. Mr. Hohmann is author of
Journey of the Software Professional: A
Sociology of Software Development from
Prentice-Hall as well as numerous articles
on software engineering management. A
skilled instructor and speaker, Mr.
Hohmann has been invited to many
conferences. Mr. Hohmann can be
contacted through e-mail at
LukeHohmann@yahoo.com.

42 How to Really Fail at Software Architecture

TUESDAY TUTORIALS

82 OOPSLA 2001 Conference oopsla.acm.org

TUESDAY

Tuesday, Full Day
Marriott Hotel — Meeting Room 12
Rebecca Wirfs-Brock,
Wirfs-Brock Associates
John Schwartz, Wirfs-Brock Associates
Use cases describe the behavior of a
software system from an external usage
perspective. There is an art to writing
them clearly. Written carefully, use case
models convey key usage specifications
and can be tied to other requirements.
Written poorly, use cases are confusing
and ambiguous. This tutorial presents
examples of good and bad use case
descriptions, and practical techniques for
writing three forms of descriptions:
narratives, scenarios, and conversations.
Narratives are high-level descriptions
written from an external perspective. We
show how to elaborate high-level
descriptions, choosing either a scenario
form, which emphasizes sequence, or a
conversation, which highlights
interactions between a user and the
system. Tips for naming use cases,
describing policies, errors, and exceptions,
attaching other important information,
describing meaningful pre- and
post-conditions, and creating informative
glossary entries are also presented. This
tutorial will expose students to techniques
for critically reading and revising use
cases in various forms, techniques for
asking probing questions and filling in use
case details, and techniques for
developing a use case model which
interleaves both group activities with
individual writing tasks and review.
Attendee Background: Attendees should
be looking for practical ways to improve
their writing. They should be familiar with
writing and reading software requirements
and usage descriptions. Attendees could
benefit from an introduction to object
concepts. However, an object background
is not a prerequisite!

Presenters: Rebecca Wirfs-Brock is
president of Wirfs-Brock Associates, a firm
specializing in the transfer of object
analysis and design expertise to
organizations and individuals through
training, mentoring, and consulting.
Rebecca has been involved with object
technology since its infancy. She is the
inventor of the set of development practices
known as Responsibility-Driven Design.
From development on the Tektronix
implementation of Smalltalk in the early
1980s, through years of development and
training experience, she is recognized as
one of only a few knowledgeable and
influential practitioners of object-oriented
design. She spent 17 years as a Software
Engineer at Tektronix, where she managed
the first commercial Smalltalk effort and
was the technical lead for the development
of Color Smalltalk. Recently, she has
authored use cases for a
telecommunications framework and an
online banking system and has mentored
teams in use case writing, design,
architecture and managing incremental,
iterative object-technology projects. She
practices what she teaches!
John Schwartz is Vice President of
Consulting Services at Wirfs-Brock
Associates and a widely known and
respected authority on object analysis and
design. John has over 15 years of
experience developing and managing
object-oriented projects in
telecommunications, medical, and CAD. He
has served as Vice President and Director of
Software Architecture of a 120-person
telecom information technology group.
While with ParcPlace Systems, he
influenced the development of the Object
Behavior Analysis method pioneered by
Adele Goldberg and Kenny Rubin. John
was chairman of the OMG’s original Object
Model Task Force, and developed the model
that CORBA is based on. He has
contributed to the definition and practical
application of Object Behavior Analysis,
and Responsibility-Driven Analysis and
Design methodologies. He consults on
design and methodology to major
object-oriented projects. He has conducted
over 100 tutorials and classes on object
analysis, design, and programming.

43 The Art of Writing Use Cases

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 83

Tuesday, Full Day
Convention Ctr — Room 25
Jens Coldewey, Coldewey Consulting
Alan O’Callaghan,
De Montfort University
Wolfgang Keller, Generali Vienna Group
Architecture is one of the key issues in
successful software projects. In the recent
years, many publications have discussed
what architecture is about and how to
describe it. However, there has been little
information about how a good architecture
is found and how to implement it into a
project successfully. Based on the field
research at De Montfort University and
many years of hands-on experience, this
tutorial teaches best-practices on how to
develop an architectural model for
business systems. It addresses both
“green-field” projects and re-engineering
efforts with a special emphasis on agile
processes and on component architectures.
The tutorial is designed interactively with
more than half of the time dedicated for
exercises and discussion.
Attendee Background: This tutorial aims
at designers and project managers of
object-oriented business systems who are
interested in software architecture and
who are open to interactive learning
experiences. They should be familiar with
object-oriented design patterns as
published by Gamma, Helm, Johnson, and
Vlissides in “Design Patterns — Elements
of Reusable Object-Oriented Software”

Presenters: Jens Coldewey
(jens_coldewey@acm.org) is independent
consultant in Munich, Germany,
specialized in deploying agile processes
and object-oriented techniques in large
organizations. He consults architecture
projects in several large projects. Jens
Coldewey writes a column on Agile
Processes in the German SIGS/101
magazine OBJEKTSpektrum.
Alan O’Callaghan (aoc@dmu.ac.uk) is
Senior Lecturer in computer science at De
Montfort University, Leicester, England.
He has consulted in the migration of
legacy systems to object and
component-based systems in a number of
industrial sectors and authored the
ADAPTOR pattern language. He writes a
column on migration in the SIGS/101
journal Application Development Advisor.
Wolfgang Keller
(wolfgang_keller@acm.org) is a principal
architect for Generali Vienna Group. His
responsibilities include the technical base
for Generali’s Phoenix line of insurance
applications, product architecture, and
project coordination for Generali’s
distributed development across parts of
Europe.

44 Architecting Large Business Systems

TUESDAY TUTORIALS

84 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Marriott Hotel — Meeting Room 11
Jos Warmer, Klasse Objecten
Anneke Kleppe, Klasse Objecten
As the use of UML grows and UML is
applied to more fields of software and
systems engineering, the need for more
precise specifications grows. This is
crucial, for example, when generating
code or test cases from specifications. In
the component based world we need to be
able to specify the behavior of
components in a very precise way. This
enables us to know whether components
are plug-compatible and allows us to
derive the behavior of assembled
components and make sure that they have
the desired behavior. For these purposes
UML’s Object Constraint Language is
becoming more popular as a standardized
and language independent specification
mechanism. This tutorial shows the
importance of constraints as an
object-oriented specification technique
and how they add value to the visual
modeling techniques of UML. The OCL
language itself and the connection with the
visual UML diagrams is thoroughly
explained. The final part of the tutorial
will show how one can apply constraint
modeling in UML to achieve the above
described goals.
Attendee Background: The tutorial is
targeted to people that have knowledge of
and experience with analysis and design
methods like UML. They should
specifically have experience in developing
object or class models.

Presenters: Jos Warmer is senior
consultant at Klasse Objecten. He is the
chief architect of OCL and responsible
within the UML core team for all matters
concerning OCL.
Anneke Kleppe is an independent OT
consultant who founded her own company
Klasse Objecten in 1995. She has
developed her own training and mentoring
program and has applied this with many
clients. She has actively supported the
UML core team on the subject of OCL.
Anneke and Jos have co-authored the
book entitled, The Object Constraint
Language: Precise Modeling with UML,
which has been published in the OT series
by Addison-Wesley Longman, USA. They
also wrote (Dutch) books on OMT and
UML, published by Addison-Wesley.

45 The UML’s Object Constraint Language (OCL) —
Specifying Components

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 85

Tuesday, Afternoon
Convention Ctr — Room 16
David Hemphill,
Catapult Technologies, Inc.
Java 2 Micro Edition (J2ME) is Sun’s Java
2 platform for consumer electronics and
embedded devices. Writing software for
limited devices offers unique challenges to
the application developer. In many cases,
developers are required to improvise in
graphical user interface, persistent storage,
I/O, and other areas in order to make the
application work under resource
constraints. The extremely varied nature
of many of the targeted devices makes
solving issues even more challenging.
In this presentation, many of the
difficulties and potential solutions of
developing mobile, wireless, and other
limited device J2ME applications will be
addressed.
Attendee Background: Participants
should be familiar with Java programming
and have some familiarity with J2ME.

Presenter: David Hemphill is a Senior
Software Architect with Catapult
Technologies, Inc. He has over ten years
of experience in developing and
architecting software systems. David’s
technical expertise lies in Java, J2EE,
J2ME, EJB, UML, XML, and relational
databases. He is a graduate of the
University of Wisconsin, Eau Claire.

46 J2ME Design and Development Considerations

TUESDAY TUTORIALS

86 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Convention Ctr — Room 5
Detlef Vollmann,
Vollmann Engineering GmbH
Embedded software is different: it often
involves hard real-time constraints and
very limited memory. But the challenges
for embedded systems are even higher:
they must be very reliable (99.999% is not
good enough) and need to tackle a variety
of different memory types (standard
RAM, EEPROM, Flash, buffered
RAM, ...). Another frequent design
problem is the different kinds of
processing tasks: interrupt handling,
hardware control, application processes,
all interconnected by a selection of
communication means. To design a
system in such an environment, a rich
programming language like C++ seems to
be quite useful. But on the other hand, it is
often more difficult to keep the tight
control necessary, e.g., for hard real-time
requirements, with such a high-level
language. This tutorial will present and
discuss various techniques for designing
and implementing typical embedded
systems problems in C++. Different
language features are analyzed with
respect to embedded requirements.
Participants of this tutorial will acquire a
thorough understanding of the potentials
of C++ for the development of systems
with tight limitations. They will learn
effective techniques to deal with these
limitations even for complex systems.
Attendee Background: Participants
should have a good working knowledge of
ISO C++. Experience in the design of
embedded systems will be helpful but is
not essential.

Presenter: Detlef Vollmann has a
background of 15 years in software
engineering and more than 10 years with
object technology. As an independent
consultant he supports several Swiss
companies with the design of
object-oriented systems. Since 1991, he
has authored and taught courses in C++,
Object-Oriented Technologies, Software
Architecture, and Distributed Computing
for major Swiss companies.

47 Embedded Systems in C++ — C++ Idioms, Patterns, and
Architecture for Constrained Systems

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 87

Tuesday, Afternoon
Convention Ctr — Room 15
Federico Balaguer,
Software Architecture Group -
Department of Computer Science,
University of Illinois
Joseph Yoder,
Software Architecture Group -
Department of Computer Science,
University of Illinois
Architectures that can dynamically adapt
to changing requirement are sometimes
called “reflective” or “meta” architectures.
We call a particular kind of reflective
architecture an “Adaptive Object-Model
(AOM)” architecture. This tutorial will
explain AOMs and how to implement
them. An Adaptive Object-Model is a
system that represents classes, attributes,
and relationships as metadata. It is a
model based on instances rather than
classes. Users change the metadata (object
model) to reflect changes in the domain.
These changes modify the system’s
behavior. In other word, it stores its
Object-Model in a database and interprets
it. Consequently, the object model is
active, when you change it, the system
changes immediately. We have noticed
that the architects of a system with
Adaptive Object-Models often claim this
is the best system they have ever created,
and they brag about its flexibility, power,
and eloquence. At the same time, many of
the developers find them confusing and
hard to work with. This is due in part
because the developers do not understand
the architecture. This tutorial will give a
description of this architectural style and
will make it easier for developers to
understand and build systems that need to
quickly adapt to changing business
requirements.

Attendee Background: A good
knowledge of object concepts is required.
It would be useful if participants have a
basic understanding of frameworks,
though it is not necessary. A general
understanding of the GOF patterns is
required and Fowler’s Analysis Patterns is
helpful.
Presenters: Federico Balaguer has been
developing object-oriented software for
over ten years. He has worked on many
projects including J.P. Morgan in
Argentina. He is currently working on
implementing Martin Fowler’s Analysis
Patterns at Illinois Department of Public
Health and is also working with Professor
Ralph Johnson on finishing his Ph.D.
Joseph W. Yoder has worked on the
architecture, design, and implementation
of various software projects dating back to
1985. Recently he has taught
Object-Oriented concepts including
Patterns and Smalltalk to Caterpillar and
the Illinois Department of Public Health
(IDPH) analysts and developers, and has
mentored many developers on the
development applications being deployed
across the state of Illinois such as the
Newborn Screening application, the
Refugee System, and the Food Drug and
Dairy application. He is also coordinating
the efforts of this development as the
primary architect of the reusable
frameworks being developed. Joe is the
author of over two dozen published
patterns and has been working with
patterns for a long time, writing his first
pattern paper in 1995, and chairing the
PLoP‘97, conference on software
patterns.

48
Adaptive Object-Model Architecture:
How to Build Systems That Can Dynamically Adapt to New
Business Requirements

TUESDAY TUTORIALS

88 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Convention Ctr — Room 3
Steve Freeman, Big Blue Steel Tiger
Writing effective unit tests is a skill that
takes practice to do well but is at the core
of Extreme Programming. During this
tutorial we will demonstrate real examples
that address situations many programmers
find hard to test. We will also show how
test-driven development improves the
quality of the code produced. Finally, we
will consider the practical boundaries of
effective unit testing. This tutorial will
improve attendees’ understanding of how
to write meaningful and effective unit
tests, demonstrate live, test-driven
development and pair-programming, and
cover topics that many people find
difficult when writing unit tests.
Attendee Background: The session is
intended for working programmers who
are interested in writing effective unit
tests. They should be familiar with Java
and, preferably, standard libraries such as
JDBC and servlets. The tutorial has a bias
towards web development, but the
techniques it covers are applicable
elsewhere.

Presenter: Steve Freeman is a Principal
Consultant at Big Blue Steel Tiger, where
he develops e-commerce solutions and is
also responsible for helping to move Big
Blue Steel Tiger towards Extreme
Programming. Prior to this, he ran the
largest XP project in the UK at Lombard
Risk Systems. He has degrees in Statistics
and Music, and a Ph.D. in computer
science from Cambridge University and
has written software for research labs,
shrink-wrap and bespoke systems.

49 No Stone Unturned: An Introduction to Test-First
Programming

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 89

Tuesday, Afternoon
Convention Ctr — Room 22
Len Bass,
Software Engineering Institute
Felix Bachmann, Robert Bosch, GmbH
It has long been recognized that quality
attributes are, in large part, determined by
the software architecture of a system. This
recognition has been the basis for several
software architecture analysis methods.
The application of this recognition to the
problem of designing the software
architecture is a recent development,
however. This tutorial will introduce the
Attribute Driven Design (ADD) method.
ADD is a method for designing the
software architecture of a system or
collection of systems based on an explicit
articulation of the quality attribute goals
for the system(s). The method is
appropriate for any quality attributes but
has been particularly elaborated for the
attributes of performance, modifiability,
security, reliability/availability and
usability. The method has been used for
designing the software architecture of
products ranging from embedded to
information systems.
Attendee Background: This half-day
tutorial is designed for attendees who have
practical knowledge of software
architecture and experience in working
with and designing large systems.
Presenter: Len Bass is a senior software
engineer at the Software Engineering
Institute of Carnegie Mellon University
(CMU). He has written or edited six books
and numerous papers in a wide variety of
areas of computer science including
software engineering, human-computer
interaction, databases, operating systems,
and theory of computation. His most
recent book, Software Architecture in
Practice (co-authored with Clements and
Kazman), received the Software
Development Magazine’s Productivity
Award. He headed a group that developed
a software architecture for flight training
simulators that has been adopted as a
standard by the U.S. Air Force. He also
headed a group that developed a

technique for evaluating software
architectures for modifiability. He is
currently working on techniques for the
analysis of software architectures, on
techniques for the development of
software architectures for product lines of
systems, and on the how to achieve
usability through architectural means. He
is the representative of the ACM to the
International Federation of Information
Processing technical committee on
Software: Theory and Practice. Before
joining CMU in 1986, he was professor
and chair of the Computer Science
Department at the University of Rhode
Island. He received his Ph.D. in computer
science in 1970 from Purdue University.
Mr. Bachmann is currently Project
Manager for the Product Line approach
within Robert Bosch, GmbH. In
cooperation with the Product Line
Systems Program of the Software
Engineering Institute (SEI), he makes this
approach available to the Bosch business
units. Prior to his current assignment, he
worked as a member of the Robert Bosch
research institute with the software
development departments to address the
issues of more functions and higher
quality in the “call-control software,” —
the core of telecommunication products.
This is where he developed the foundation
for the next generation of
telecommunications software. As a result
of these efforts, Bosch developed the
method OTES (Objects Through Essential
Services) in which Mr. Bachmann played a
decisive role. Mr. Bachmann also defined
the corresponding software development
process that describes in three levels how
to develop high quality software in a
timely fashion.

50 Designing Software Architecture for Quality:
The ADD Method

TUESDAY TUTORIALS

90 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Convention Ctr — Room 13
Connie Smith,
Performance Engineering Services
Lloyd Williams,
Software Engineering Research
Performance, both responsiveness and
scalability, is an important quality of
today’s software. Yet, many software
systems cannot be used as they are
initially implemented due to performance
problems. These performance failures can
translate into significant costs due to
damaged customer relations, lost income,
and time and budget overruns to correct
the problem. Our experience is that
performance problems are most often due
to fundamental architectural or design
problems rather than inefficient coding.
Thus, performance problems are
introduced early in the development
process but are typically not discovered
until late, when they are more difficult and
costly to fix. This tutorial presents a
systematic, quantitative approach to
cost-effectively designing performance
into object-oriented software systems. It
also presents an overview of principles
and patterns for designing performance
into software as well as antipatterns for
recognizing and fixing common problems.
Objective: Participants will be acquainted
with a cost-effective, quantitative
approach to managing software
performance. They will learn practical
techniques for diagnosing performance
problems early in the development process
when these problems can be fixed quickly
and easily. They will also learn techniques
for designing performance into software.
Attendee Background: Attendees should
be familiar with object-oriented
development. No background or
experience in software performance
engineering is required.

Presenters: Connie U. Smith, Ph.D., a
principal consultant of the Performance
Engineering Services Division of L&S
Computer Technology, Inc., is known for
her work in defining the field of Software
Performance Engineering (SPE) and
integrating SPE into the development of
new software systems. Dr. Smith received
the Computer Measurement Group’s
prestigious AA Michelson Award for
technical excellence and professional
contributions for her SPE work. She
authored the original SPE book,
Performance Engineering of Software
Systems, and approximately 100 scientific
papers. She is the creator of the SPE·ED
performance engineering tool. She is a
frequent speaker at conferences and has
delivered numerous keynote addresses on
SPE. In her work at L&S Computer
Technology she specializes in the
development and support of the
performance engineering tool, SPE·ED,
applying performance prediction
techniques to software, teaching SPE
seminars, and research and writing on
SPE.
Dr. Lloyd G. Williams is principal
consultant at Software Engineering
Research where he specializes in the
development and evaluation of software
architectures that meet quality of service
objectives such as: performance,
reliability, modifiability, and reusability.
Dr. Williams was previously Associate
Professor of Computer Science at the
University of Colorado at Denver. He also
served as Director of the Rocky Mountain
Institute of Software Engineering, a
non-profit organization founded to
promote research and education in
software engineering. His work has
emphasized the transfer of leading-edge
software engineering technology into
widespread use. He has presented
professional development seminars and
served as a consultant on software
development for more than 100
organizations in the USA, Japan, and
Europe. He has authored numerous
technical articles and is a contributor to
the AIAA Progress Series book, Aerospace
Software Engineering.

51 Creating Responsive, Scalable Systems

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 91

Tuesday, Afternoon
Convention Ctr — Room 14
Norm Kerth, Elite Systems
Linda Rising, Independent Consultant
In the object-oriented world, it’s our fate
to experiment with new ideas. It started
with objects and continued with OMT,
Fusion, Objectory, UML, Patterns,
Extreme Programming and so on. Our
community is good at accepting new
concepts but are we good at evaluating the
results? “You have paid the tuition, now
are you going to learn the lessons?”
Carefully reviewing an OO project at its
end is one of the most obvious ways of
improving your software development
process and building OO mastery. Sadly,
such a review rarely happens — why?
Because we don’t know how to do it; we
don’t know how to deal with the emotions;
we don’t know how to address failure; and
we don’t know how to convert the lessons
into new practices. In this tutorial, we look
at an entire philosophy and methodology
to lead an effective review of a significant
OO project. Expect to learn a number of
tools, techniques and skill areas necessary
to be an accomplished facilitator.
Attendee Background: Managers,
Project Leaders, Software Process Group
Specialists, Trained Facilitators,
Methodologists, Technical Leaders

Presenters: Norm Kerth is an experienced
software engineer and researcher focusing
on specification and design activities,
quality assurance, continuous process
improvement, project management and
growing effective teams. He has led
retrospectives for over 20 years and critics
predict his book, Project Retrospectives,
will become “the next classic in our
field.” Norm has been a full time
consultant since 1984 and helps firms
improve their software engineering
discipline. He has particular interest in
objects, pattern languages, and building
high performance teams. Prior to starting
his company, Elite Systems, he was a
professor at the University of Portland. He
has a decade of engineering experience
with Tektronix and is a master teacher,
with over 30 years of experience in front
of students.
Linda Rising has a Ph.D. from Arizona
State University in the area of
object-based design metrics. Her
background includes university teaching
experience as well as work in industry in
the areas of telecommunications, avionics,
and strategic weapons systems. She has
been working with object technologies
since 1983. She is the editor of A Patterns
Handbook, The Pattern Almanac 2000,
and Design Patterns in Communication
Software.

52 Leading Retrospectives on OO Projects:
Looking Back to Move Forward

TUESDAY TUTORIALS

92 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Marriott Hotel — Meeting Room 1
Granville Miller, TogetherSoft
Developing models of your business can
serve many purposes. These models can
help you as you continually engineer your
business to keep up with the competitive
pressures of today’s business
environment. Additionally, they can help
as you develop the software systems that
give you competitive advantage. UML
modeling elements such as use cases and
business object models are excellent ways
of capturing existing business processes or
the processes of the future. These models
can then be used to communicate
requirements to software engineers, the
organization at large, or the people who
will be a vital part of carrying out the
objectives of the process. In this tutorial,
we describe methods of capturing
processes and modeling them. We present
UML as a method of describing them.
Finally, we introduce some additions to
the UML which will aid organizations to
deploy these systems and processes in
their organizations.
Attendee Background: This tutorial is
geared toward business analysts,
requirements engineers, and software
managers and developers who wish to
place their software solutions in the
context of a business process.

Presenter: Granville Miller is currently a
mentor at TogetherSoft. He is the
co-author of Advanced Use Case
Modeling, Volume I, and has two more
books slated for the end of the year. He
has been active in the OO community and
has given tutorials at several conferences.
He has been working heavily with use
cases as a method of business modeling
for several years.

53 Business Modeling with the UML

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 93

Tuesday, Afternoon
Convention Ctr — Room 23
Alan Cameron Wills,
Trireme International Ltd.
Extreme Programming has justifiably
become wildly popular, especially among
developers of eCommerce systems, for
whom lightweight process and
responsiveness to changing requirements
are prerequisites. And yet practices like
analysing and documenting requirements
upfront used to seem like a good idea. So
did careful definition of the interfaces
between components — an essential for
CBD and EAI. This tutorial draws on the
presenter’s experience in constructing a
corporate process that combines the best
of iterative development together with
requirements and interface specification
techniques from the Catalysis approach.
We will look at how to ensure that
requirements analysis raises questions to
the customer, rather than just recording
use-cases; how to relate the
incrementally-delivered features to the
use-cases in the requirements model; how
to use the requirements and interface
models to generate tests; and how to
ensure that the customer-developer link is
enhanced rather than weakened by the
mediation of the requirements analyst.
Participants will be able to improve the
processes in their own companies. Part of
the session will be in workshop mode, and
contributions from people with experience
in this area are welcome.
Attendee Background: Some UML;
some incremental development.

Presenter: Alan Cameron Wills is a
consultant in methods and process
working in a variety of fields on both sides
of the Atlantic. He is joint author of the
Catalysis Approach to Component and
Object Design.

54 XP Meets UML: Development Processes for eTechnology

TUESDAY TUTORIALS

94 OOPSLA 2001 Conference oopsla.acm.org

Tuesday, Afternoon
Convention Ctr — Room 24
John Daniels,
Syntropy Limited, UK
Much has been written about
component-based design but most books
and articles deal in generalizations and
possibilities, rather than providing explicit
and clear guidance. This tutorial will
follow a small case study from
requirements capture to code-ready
specifications, and will set out the full
client and server architectures needed to
make it work. The modeling and
specification techniques used will follow
the UML, with the target technologies
being EJB or COM+. A web-based UI is
assumed. To complete the example, the
tutorial will show how to implement the
case study using EJB.
Attendee Background: The tutorial is
aimed at modelers, system designers and
architects. A working knowledge of UML
is required, and some understanding of
EJB or COM+ would be an advantage.

Presenter: John Daniels is a consultant at
Syntropy Limited, providing help with
system architectures and development
processes to a number of large
corporations. He was previously
Application and Technical Architect for
Bankers Trust in London, and before that
Managing Director of pioneering
consulting and training company Object
Designers Limited. He has applied object
technology in a range of industrial and
commercial applications since 1985. He
has given tutorials at many object
technology conferences, has prepared and
delivered many training courses, and has
published extensively. He is co-author of
Designing Object Systems (Prentice-Hall
1994) and UML Components
(Addison-Wesley 2001).

55 Component-Based Design: A Complete Worked Example

TUTORIALS TUESDAY

oopsla.acm.org OOPSLA 2001 Conference 95

Tuesday, Afternoon
Convention Ctr — Room 6
Chris Carpenter,
RoleModel Software Inc.
Chris Collins,
RoleModel Software Inc.
Java has always promised the ability to
run on any size platform, from
mainframes to wristwatches. Now the
promise of supporting “small” platforms is
truly here. This tutorial will teach the
current state of the art with respect to
developing Java applications for the J2ME
and IBM VisualAge Micro Edition
application environments (JAE’s).
Developers accustomed to creating
applications for the web, desktop, or
workstation environments will receive
instruction on how to approach developing
their own small-environment Java
applications from pioneers who have
actually attempted (successfully and
unsuccessfully) to build such applications
using the different environments. There
are significant differences in Sun’s and
IBM’s approach to putting Java in small
spaces. The benefits and limitations of
each will be discussed. The tutorial will
not only discuss how to get Java
applications working on small devices but
will also provide practical advice about
when putting Java on a small device
makes sense and when it does not. In
addition, the tutorial will discuss
integrating Java enabled devices into the
much-ballyhooed Jini environment.
Attendee Background: Participants
should be Java developers or technical
leaders of Java projects.

Presenters: Chris Carpenter is a senior
level software engineer and architect
working for RoleModel Software, Inc. Mr.
Carpenter has been involved in object
oriented development since 1991. He cut
his object teeth building object-oriented
distributed software frameworks written in
Objective-C running on NeXTs. In the
early 90’s he participated in architecting
and building distributed systems
frameworks based on the then emerging
CORBA 1.0 specification. His skill at
looking beyond the obvious and finding
solutions to his customer’s problems has
always been tied to the maxim “model the
world the way you want it to be.”
Recently, he has been involved in the
design and prototype of Java in small,
remote devices and their integration into
infrastructures that rely upon the remote
devices for system solutions. Mr.
Carpenter is an author of the Automated
Meter Reading System patent along with
patents pending involving Java and Jini in
remote devices joined to larger enterprise
frameworks.
Chris Collins is a Senior Software
Developer at RoleModel Software, Inc.
While at RoleModel, Chris has created an
acceptance test framework, developed an
embedded Java application for a new
Motorola, Inc. cell phone platform, and
ported JUnit to run on Sun’s J2ME
platform. Before joining RoleModel in
early 2000, he spent five years developing
software for several organizations using
many different languages for U.S.
Department of Defense. Chris has a
Masters in Computer Science and
Software Engineering from the University
of West Florida, currently teaches a Java
programming course at North Carolina
State University, has been an invited
speaker on XP at Duke University, and
presented a paper on process adaptation
at XP2001.

56 Developing Java Applications for Small Spaces

WEDNESDAY TUTORIALS

96 OOPSLA 2001 Conference oopsla.acm.org

WEDNESDAY

Wednesday, Afternoon
Convention Ctr — Room 3
Joseph Yoder, The Refactory, Inc.
For developing simple client-server
applications, development environments
such as VisualAge provide a visual
language for generating the mappings of
GUIs to database values and domain
objects. For complex applications, tools
such as TOPLink are very useful for
simplifying the creation of persistent
objects while hiding their implementation
details. Quite often, application
development requires tools for persistence
that fall in between these two extremes.
Just using the facilities provided by JDBC
is not sufficient to work with objects.
JDBC forces developers to work at the
SQL level with rows and columns.
Application developers do not want or
need to write SQL statements to read or
store their objects; they are busy solving
the domain problem. This tutorial will
describe how to make business objects
persistent by mapping them to a relational
database with minimal effort. It will also
examine the patterns used to map
domain-objects to a relational database.
Participants of this tutorial will learn a set
of patterns and a language-independent
object model that can be used for mapping
business objects to a relational database.
They will also learn how to develop a data
access layer along with the design patterns
used in the database tools provided by
VisualAge and TOPLink.
Attendee Background: Basic knowledge
of object concepts is required. A general
understanding of relational databases
and/or SQL is required. An understanding
of patterns can be useful, but it is not
required. The examples will be in Java so
understanding the basics of Java is also
desirable, but not necessary to understand
the object-model.

Presenter: Joseph W. Yoder has worked
on the architecture, design, and
implementation of various software
projects dating back to 1985. These
projects have incorporated many
technologies and range from stand-alone
to client-server applications, multi-tiered,
databases, object-oriented, frameworks,
human-computer interaction,
collaborative environments, and
domain-specific visual languages.
Recently he has taught object-oriented
concepts including Patterns and Smalltalk
to Caterpillar and the Illinois Department
of Public Health (IDPH) analysts and
developers, and has mentored many
developers on the applications being
deployed across the state of Illinois, such
as the Newborn Screening application, the
Refugee System, and the Food Drug and
Dairy application. He is also coordinating
these development efforts as the primary
architect of the reusable frameworks being
developed and used for these applications.
Joe is the author of over two dozen
published patterns and has been working
with patterns for a long time, writing his
first pattern paper in 1995, and chairing
the PLoP‘97 conference on software
patterns.

57 Patterns for Making Your Business Objects Persistent in a
Relational Database World

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 97

Wednesday, Afternoon
Marriott Hotel — Meeting Room 11
Pete McBreen, McBreen Consulting
Now, more than ever, software
development requires innovative thinking.
Our challenge has shifted from writing the
code to identifying and evaluating new
ideas, processes and applications. Creating
software is one of the most creative
activities that humans undertake. The
main limitation in software is the human
imagination, and the limits on that are all
self imposed. Through the application of
creativity, it is possible to create truly
great software. This tutorial explores
ideas about creativity and how they relate
to software development. Specific topics
that will be covered include -
brainstorming techniques for eliciting
requirements - creating and evaluating
alternate designs - creativity and software
development processes - creativity and
quality assurance - creativity for
programmers. Objective: On completion
participants will understand how to apply
creative thinking strategies to software
development.
Attendee Background: Developers, team
leaders and managers who need to step up
to the challenges of developing great
software.

Presenter: Pete McBreen is a course
designer, teacher, and project lead in
object technology. He is responsible for
ensuring that project teams make effective
use of object technology on projects
including project startup, methodology
and tool selection, mentoring, process
improvement, system design and quality
assurance. With over 16 years of industry
experience, he has been successfully using
and teaching object-oriented techniques
since 1989.

58 Creativity in Software Development

WEDNESDAY TUTORIALS

98 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Convention Ctr — Room 22
Josh MacKenzie, ThoughtWorks, Inc.
Rebecca Parsons, ThoughtWorks, Inc.
J2EE has exploded onto the enterprise
systems development world with a handy
mix of powerful technologies. They make
for an impressive list of features, but they
are still young and it isn’t so obvious how
you actually put them together.
ThoughtWorks likes being on the bleeding
edge, so in the last couple of years we’ve
put into production some sizeable
enterprise applications. In doing this
we’ve learned a lot about the different
architectures you can use and their relative
merits. In this talk we’ll walk you through
half a dozen architectural designs that
we’ve seen in the field. We’ll review the
issues that you need to understand to build
enterprise applications and use these
issues to evaluate the candidate
architectures. In passing we’ll discuss a
number of key patterns for server-side
object design.
Attendee Background: Knowledge of
Java and J2EE.

Presenters: Josh MacKenzie has been
with ThoughtWorks for three years,
serving as a developer, architect and team
lead. He has worked on projects in
equipment leasing, insurance and
industrial supply and purchasing. These
projects have utilized a wide variety of
technologies, including J2EE, XML,
Forte, and LDAP. Josh has also been
instrumental in the exploration and
adoption of lightweight methodologies on
ThoughtWorks’ projects. Prior to
ThoughtWorks, Josh served as a Senior
Engineer for Motorola Energy Systems,
where he designed and developed
real-time testing and analysis software for
electrochemical capacitors. He holds a
B.A. in Physics and Mathematics, and an
almost-M.S. in Chemical Engineering.
Josh presented tutorials at JavaCon2000
on “Refactoring” and “Business Objects
in J2EE.” ThoughtWorks, Inc. is a
leading custom e-business application and
platform development firm.
Rebecca Parsons is a Senior Architect for
ThoughtWorks, Inc., a leading custom
e-business application and platform
development firm. While at
ThoughtWorks, Rebecca has worked on a
large scale leasing system for a financial
services subsidiary of a Fortune 100
company. Prior to joining ThoughtWorks,
Rebecca was on the faculty of the School
of Computer Science at the University of
Central Florida where she taught
compilers, operating systems,
programming languages and
computational biology. Rebecca has
worked at Los Alamos National
Laboratory as well as in industrial
positions. She has spoken at both
academic and industrial conferences and
has served on program committees and
editorial review boards for various
conferences and publications. Rebecca
received a Ph.D. in Computer Science
from Rice University in 1992.

59 Architectures for Integrating Business Logic into J2EE

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 99

Wednesday, Afternoon
Convention Ctr — Room 16
Cara Taber, ThoughtWorks, Inc.
Ron Crocker, Motorola, Inc.
Most software projects are very poorly
planned. They often have a very
impressive chart on the wall describing a
plan; but that plan is so out of sync with
reality that it is more dangerous than
useful. The painful truth is that many
projects these days are faced with
changing requirements, where even half
way through a release cycle you still aren’t
sure what needs to go in the product. In
such situations many principles of project
planning are undermined, and if this isn’t
recognized planning falls apart. Despite
the uncertainties, agile projects must be
planned and can be controlled. In this
tutorial we’ll look at a simple yet effective
technique that can be used to do that. The
core of the ideas are based on the planning
approach of XP (Extreme Programming)
as described in Planning Extreme
Programming. However we’ll take the
techniques and extend the ideas to cover a
broader range of agile processes to allow
the planning approaches to fit in with
processes such as Crystal and RUP. The
talk will cover the purpose of planning and
the basic principles of XP style planning:
four variables, project velocity,
yesterday’s weather, and division into
release and iteration plans. With release
planning we’ll look at how requirements
are chunked up into features (stories), the
relationship between features and use
cases, how features are estimated, how
features are allocated to iterations. In
iteration planning we’ll look at the break
down of features into tasks, allocation of
tasks to people, sizing of tasks, and how
an iteration is tracked. We’ll look at
scaling the planning process while
sticking to the underlying values, based on
experiences running larger projects and
global multi-site development.
Attendee Background: no specific
background required

Presenters: Cara Taber has been at
ThoughtWorks, Inc., an Internet
professional services provider specializing
in the delivery of highly strategic B2B
e-Commerce solutions, for three and a
half years. During that time she has been
a developer, designer, analyst and project
manager. In her current role as Release
Plan Manager, she works closely with the
team project manager focusing on
planning the iterations and orchestrating
the monthly 60-person all team iteration
kick-off meeting. She has also published
an article with Martin Fowler entitled “An
Iteration in the Life of an XP Project,”
which appeared in the November 2000
issue of the Cutter IT Journal.
Ron Crocker is a Senior Member of
Technical Staff in the Network and
Advanced Technology department in
Motorola, Inc. where he is responsible for
cellular system architecture and design. He
has over 15 years of experience with
object-oriented technologies, starting as a
C++ guinea pig.

60 Planning Agile Projects

WEDNESDAY TUTORIALS

100 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Convention Ctr — Room 25
James Noble, Computer Science, Victoria
University of Wellington, NZ
Charles Weir, Penrillian
Typical OO development techniques
assume systems with relatively large
memories. Developers working with tight
memory requirements need the flexibility
and encapsulation that OO can provide,
but cannot afford to produce large
systems. This tutorial will describe how
you can use OO techniques in a
memory-constrained environment. Using
design patterns and practical examples,
this tutorial will teach the most important
techniques that successful OO designers
use for small memory software. After
attending this tutorial, participants will be
able to:

• prepare a memory budget;
• design a software architecture and

component interfaces to minimize
memory use;

• track memory consumption through
the development process; and

• tailor user interfaces for small
software.

The tutorial balances direct presentations
(for overviews and to present each pattern)
and case study exercises (to reflect on
patterns and see how they can be applied).
Attendee Background: This tutorial
targets anyone planning, or involved in,
development of OO applications in limited
memory. This tutorial is most useful to
developers with a year’s experience using
an OO language and technical team
leaders. Experience of memory-limited
systems is helpful but not essential.

Presenters: Dr. James Noble has recently
returned home to lecture at the Victoria
University of Wellington, New Zealand.
While in Sydney, he established the Sydney
Patterns Group, the first patterns group in
the Southern Hemisphere, and he has
extensive experience lecturing, teaching,
and mentoring with software design, user
interface design, and design patterns.
Charles Weir is co-founder and managing
director of Penrillian, a software house
specialising in components for mobile
communicators. Charles has more than
fifteen years’ experience as a software
engineer and consultant in OO
techniques. He was Symbian technical
lead for the Ericsson MC218
communicator project, and software
architect for the Psion Series 5 Web
Browser. He is co-author of the book,
Small Memory Software, and has led
many courses and workshops on OO
design and implementation.

61 Designing Small Memory Software:
Development Patterns for Systems with Limited Memory

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 101

Wednesday, Afternoon
Convention Ctr — Room 5
Ira Forman, IBM
Nate Forman, Liaison Technology
The use of reflection is an important
technique for improving productivity.
Reflection facilitates development of
programs that are easily adapted to
requirement changes. With reflection one
can develop software engineering tools
that examine or produce code. Reflection
facilitates testing and problem
determination by facilitating the
automation of more tedious tasks. In
general, reflection improves the flexibility,
extensibility, and reusability of one’s code.
The Java language contains a highly
effective reflection facility. The tutorial
explains the concept of reflection, the Java
metaobjects (including both introspective
and intercessional interfaces), the proxy
class, and dynamic compilation and class
loading. The limits of Java reflection are
addressed in the context of what reflection
is capable of in general. In addition, the
tutorial demonstrates the efficacy of the
Java reflection facility for solving
practical problems. Such problems
include: program/application testing,
generation of code, inspection of code,
and use of dynamic class loading in a
framework for application extension.
Attendee Background: An attendee must
be a competent Java programmer.

Presenters: Dr. Ira R. Forman works for
IBM in Austin. As a member of IBM’s
Object Technology Products Group, which
produced the SOMobjects Toolkit, he
worked on the SOM Metaclass
Framework. He started working in the
area of object-oriented programming in
1984, when he worked at ITT
Programming Technology Center. Forman
received his Ph.D. in Computer Science
from the University of Maryland, where he
studied under Harlan Mills. Forman’s
specialties are object-oriented
programming, distributed systems, and
object composition. He is the coauthor of
two books, Interacting Processes: A
Multiparty Approach to Coordinated
Distributed Programming and Putting
Metaclasses to Work: A New Dimension
in Object-Oriented Programming.
Nate Forman works for Liaison
Technology where he designs and
programs application frameworks for
their products. His specialties are patterns
and object-oriented programming.
Forman holds a M.S.E. in Software
Engineering from the University of Texas
at Austin and a B.S. in Computer Science
from the College of Engineering at
Cornell University.

62 Reflection in Java

WEDNESDAY TUTORIALS

102 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Marriott Hotel — Meeting Room 12
Dave Thomas,
The Pragmatic Programmers, LLC
Andy Hunt,
The Pragmatic Programmers, LLC
Smalltalk was ahead of its time: we’re just
entering the decade of the untyped,
flexible language. And by all accounts,
Ruby could well be the language of that
decade. Small, but tremendously
expressive, Ruby is finding favor among
all kinds of developers. From web
applications to numerical simulations at
NASA, Ruby is gaining popularity and
mindshare. As a developer, you owe it to
yourself to have a look at Ruby. Even if
you never write a line of Ruby code, the
ideas in the language can greatly improve
the way you think about design and the
ways you implement your programs. And
if you do start writing Ruby, you’ll
discover the tremendous productivity and
readability gains that are possible. In this
tutorial, we’re offering a fast-track way to
learn the language, its libraries, and its
philosophy. Ruby is so compact and tidy,
we’re confident that in just three short
hours we’ll have you reading and writing
Ruby like an old-timer.
Attendee Background: Attendees will be
familiar with the concepts of object
orientation and programming. Some
familiarity with a scripting language such
as Perl or Python may help, but is not a
requirement. Attendees who program in
Smalltalk will find much of Ruby
comfortingly familiar.

Presenters: Dave Thomas is prominent in
the worldwide Ruby community. He
co-authored the first English-language
Ruby book, runs two Ruby web sites,
manages a Ruby Wiki, and is a frequent
contributor to the Ruby mailing lists. He
has presented Ruby in Europe and the US,
in lectures, and to local user groups. Dave
is a partner in The Pragmatic
Programmers, a software consultancy,
and co-author of The Pragmatic
Programmer.
Andy Hunt is co-author of the best-selling
book, The Pragmatic Programmer, the new
Programming Ruby, and various articles.
Between writing, traveling, woodworking
and playing the piano, Andy finds time for
his consulting business specializing in
agile software development. Andy has
been writing software professionally since
the early 1980s, and currently based in
Raleigh, NC. He is President of the RTP
chapter of the ICCA and a member of the
ACM and IEEE.

63 Ruby for the Impatient

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 103

Wednesday, Afternoon
Convention Ctr — Room 23
Ken Auer, RoleModel Software, Inc.
Roy Miller, RoleModel Software, Inc.
Extreme Programming seems to be more
appropriate in some environments than in
others. This tutorial explains why Extreme
Programming is particularly suitable for
those in a “new product” environment
using object-oriented tools and
techniques. It shows both business and
technical players how they can use this
process to effectively address these
seemingly conflicting requirements:

• getting an idea to market fast while
keeping quality high

• leveraging existing assets while
quickly adapting to the changing
demands of the market and investors

• making the best use of key people in
expanding their market reach while
not sacrificing their current market

• building a cohesive team in the midst
of constant change

• keeping up with leading technology
while still getting current work done,

Included in this tutorial will be a
participatory “Extreme Hour” simulation
showing how business and technology
roles work together in XP to keep
development and business moving
together toward a common goal at the
fastest pace possible.
Attendee Background: The target
audience is anyone interested in exploring
a new approach to leveraging
object-oriented programming, systems,
and languages in the development of new
software products. The assumption is that
attendees will have at least heard of XP
and know something about it. However,
this is not a prerequisite.

Presenters: Ken Auer is President,
Founder and Master Craftsman of
RoleModel Software, Inc. He has been
active in the development of object
oriented software since 1985. In late 1998,
RoleModel Software began building the
first Extreme Programming Software
Studio based on his vision. This is a place
where apprentices, skilled journeyman,
and software masters work together in an
environment of continuous learning with
extremely effective modes of collaboration
to produce unusually adaptable and
robust software for their clients. He is also
the co-author of XP Applied, scheduled
for publication by Addison-Wesley in
October 2001.
Roy Miller is a Software Developer at
RoleModel Software, Inc. Prior to joining
RoleModel, Roy spent six years with
Andersen Consulting (now Accenture),
most recently as a Project Manager. Roy is
a contributing author to IBM’s
developerWorks Java Zone, has
co-authored a book in the Addison Wesley
XP Series (XP Applied, scheduled for
publication in October 2001), and was a
featured panelist at the “Business of XP”
fishbowl at XP2001.

64 Realizing Extreme Programming as a
Strategic Weapon for Innovation

WEDNESDAY TUTORIALS

104 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Convention Ctr — Room 24
Joseph Pelrine, Daedalos Consulting
How much testing is enough? Too little?
Too much? What do developers need to
test? The available Extreme Programming
literature differentiates between unit
testing and functional testing, and gives
unit testing during development a
(well-deserved and much-needed) high
priority, but fails to address a number of
other important aspects of developer
testing: GUI testing, performance testing,
and packaging/delivery testing, for
example. This tutorial will illustrate new
techniques such as implementing “skins”
for JUnit and SUnit, defining test
resources for managing items which
remain active over a series of tests (e.g.
database connections), and automating or
integrating various other tests into JUnit
and SUnit. The tutorial will be only partly
lecture-based. You are encouraged to
present problems (and possible solutions)
encountered in your work, which the
group will address and attempt to solve.
We’d like to give out some diff files for
SUnit and JUnit, some TestCase
extensions, etc., and either do a few
proposed tasks, or sit down and see if we
can help each other solve some of our
testing problems. In order to do this, we’d
like to ask you (if possible) to bring along
your laptop with floppy drive, your
favorite flavor of Smalltalk or Java, SUnit
or JUnit, a power cable or fresh batteries,
and other related stuff that you think you
might need. Also, bring along some
enthusiasm and “looking-for-fun” attitude,
and we’re sure to have a ball.
Attendee Background: Since the tutorial
is (partly) hands-on, participants should
have some experience in both Smalltalk or
Java and Extreme Programming.

Presenter: Joseph Pelrine is an expert
Smalltalk programmer with over 12 years
extensive OT experience and has worked
with Kent Beck, the originator of XP, for a
number of years. A former columnist for
the Smalltalk Report and noted
international speaker, he is currently a
senior consultant with Daedalos
Consulting in Switzerland. He is coauthor
of the book, Mastering ENVY/Developer,
recently published by Cambridge
University Press.

65 Advanced Extreme Programming Testing Techniques

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 105

Wednesday, Afternoon
Convention Ctr — Room 13
Jan Christiaan van Winkel, AT Computing
This tutorial will address non trivial C++
programming constructs that experienced
programmers use frequently. These
constructs are too small to be called
patterns, but they are part of the language
skills of the proficient C++ programmer.
Therefore we call them idioms. Several
idioms will be discussed, such as:
Traits. Traits classes are used frequently in
the C++ standard. Some libraries are built
around traits classes, for example the
Boost library (www.boost.org). Using
traits, it is possible to get hold of
information about a type at compile-time,
that will then influence behavior at
runtime.
Intermediate objects. These are often used
as proxy objects to write something in
C++ that the syntax disallows, such as
a[1][2] where a is of class type. They exist
only in the expression in which they are
used.
Resource management through the
“Resource Acquirement is Initialization”
idiom. Not only allocated memory has to
be returned. If a function needs to change
a formatting flag in an ostream, that
change has to be undone when the
function ends.
After the tutorial the attendee will
recognize several idioms, and know when
to use them. As with any language,
knowing idioms will improve your
fluency.
Attendee Background: The attendees are
expected to know C++.

Presenter: JC van Winkel has a B.S. and
an M.S. in computer science (the M.S.
from the Vrije Universiteit Amsterdam).
He works at AT Computing, a small
courseware and consulting firm in
Nijmegen, the Netherlands. There he
teaches UNIX and UNIX-related subjects,
including C and C++. Except for 1995,
J.C. van Winkel has presented tutorials at
all OOPSLAs since 1993. He is the Dutch
representative in the ISO C++
standardization committee SC22/WG21.

66 C++ Idioms

WEDNESDAY TUTORIALS

106 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Marriott Hotel — Meeting Room 1
Matjaz B. Juric, Ph.D., Assistant Professor
In the tutorial we will present patterns and
techniques for the design and
implementation of performance effective
Enterprise Java Beans (EJB) components.
We will substantiate our discussion with
real-world examples and performance
measurements for different scenarios. We
will look at the basic facts regarding EJBs
and performance, explain the underlying
concepts, discuss the remote method
invocations, fine and coarse grained
interfaces, take a look at the value objects
and input validation on the client side,
learn what is the throughput problem,
present the advantages of the facade
pattern, discuss the dependent objects,
take a look at the instance management
algorithms in terms of performance, show,
how to manage persistence, transactions,
concurrency and how to avoid deadlocks,
learn how to lazy load enterprise beans
and reuse resources, discuss the
advantages of smart stubs and show how
to accelerate marshaling, learn how to
tune the performance when deploying
EJBs, give practical guidelines for
achieving scalability, etc. We will focus on
the performance relevant changes in the
EJB 2.0 specification, particularly on local
interfaces, home methods, new container
managed persistence schema, and
relationships. Sound design alone is not
sufficient for good performance. There are
performance differences hidden in the
application servers as well. Therefore we
will present performance measurement
results with different application servers.
Attendee Background: Participants
should be familiar with OO concepts,
distributed component models, Java
language, Enterprise Java Beans (EJB)
and possibly with Java 2 Enterprise
Edition.

Presenter: Matjaz B. Juric holds a Ph.D.
in computer and information science.
Currently he is an Assistant Professor at
University of Maribor, Faculty of
Electrical Engineering and Computer
Science. His Ph.D. work has received an
award from the Slovenian IEEE Section
and he participated in the OOPSLA
Doctoral Symposium in 1999. He received
several awards for articles and an award
for his B.Sc. work (from Slovenian Society
for Informatics). His research area covers
distributed systems and object technology,
with special emphasis on Java, distributed
object systems (EJB, RMI, RMI-IIOP,
CORBA, COM+), component
development, and performance. He has
been involved in performance analysis
and optimization by the development of
RMI-IIOP, an integral part of Java 2
platform, in cooperation with IBM Java
Technology Centre, Hursley, UK. Juric
has published more than 140 publications,
and twelve original scientific papers. He
has published a chapter in the book, More
Java Gems, (Cambridge University Press)
and has written a chapter on performance
in the upcoming Wrox, Professional EJB
Development book.

67 Patterns and Techniques for Developing Performance
Effective Enterprise Java Beans

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 107

Wednesday, Afternoon
Convention Ctr — Room 15
Laurie Williams,
North Carolina State University
Robert Kessler,
University of Utah
Pair programming is emerging as an
important technique for developing higher
quality code, faster. With pair
programming, two software developers
work on one computer, collaborating on
the same design, algorithm, code, or test.
This tutorial examines pair programming
research results and anecdotal experiences
of programmers who have transitioned to
pair programming. It will discuss what
works and what doesn’t and will also
explain techniques for fostering support in
making a transition to pair programming,
support from management, and support
from peers. Hands-on activities will be
used to demonstrate pair programming
benefits. Participants will experience the
difference between working alone and
working in pairs. They will understand the
research results that show pair
programming works, learn how to pair
program, what not to do when pairing, and
how to transition to pair programming.
Attendee Background: This tutorial is
targeted toward software developers and
technical software development managers
who are interested in transitioning to pair
programming.

Presenters: Dr. Laurie Williams is an
assistant professor at North Carolina
State University. In 2000, she completed
her dissertation which demonstrated
statistically that pair programmers were
able to produce higher quality products in
essentially half the time when compared to
individual programmers. Prior to her
recent academic career, Laurie worked at
IBM for nine years. Laurie and Bob are
collaborating on a book entitled, Pair
Programming Illuminated, to be published
by Addison-Wesley in 2002.
Dr. Robert Kessler is a Professor of
Computer Science and served as the last
chairman of the University of Utah,
Department of Computer Science (the
department is now known as the “School
of Computing”). He has founded several
companies and served on the board of
directors of others. Bob is an
award-winning instructor having recently
received the 2000 College of Engineering,
Outstanding Teaching Award and the 2001
University of Utah, Distinguished
Teaching Award.

68 Pair Programming: Experience the Difference

WEDNESDAY TUTORIALS

108 OOPSLA 2001 Conference oopsla.acm.org

Wednesday, Afternoon
Convention Ctr — Room 14
Alan Knight,
Cincom Systems of Canada
Naci Dai,
BEA Systems Inc.
Web development is the cool new
paradigm. How do we stop ourselves from
forgetting the lessons of previous
paradigms and just hacking our way
through? The web’s core mechanisms lend
themselves all too easily to cut-and-paste
re-use, ad-hoc scripts, direct-to-database
code, and fragmented business logic. In
the name of time-to-market, too many of
us abandon what we know and take the
path of least resistance. There are capable
and articulate people telling us this is
exactly what we should be doing. We
believe, that the lessons of objects do
apply to the web. If we apply them wisely
we can have good time-to-market for
version 1.0, ship version 2.0 successfully,
and improve the user experience along the
way. But it’s not obvious how to apply
these lessons. What, if anything, is MVC
for the web? What are the architectural
layers? How do we support multiple
channels within these layers, when
presentation differences can easily creep
into the domain logic? What about EJB?
This tutorial surveys current web
technologies with an emphasis on OO
usage, provides best practices and
examples from Java and Smalltalk,
discusses myths and truths about
components, and describes architecture
and development practices that support
good practices.
Attendee Background: Attendees should
have a reasonable understanding of OO
development. Experience with web
development is helpful, although a basic
familiarity with terms is adequate.

Presenters: Alan Knight works on
Smalltalk web tools for Cincom Systems.
Prior to that he was chief architect of the
TOPLink family of object-relational
mapping products with The Object People
and WebGain. He has spoken extensively
at conferences including OOPSLA,
Smalltalk Solutions and Java One, and is
co-author of the book, Mastering
ENVY/Developer. He can be reached at
knight@acm.org.
Naci Dai is an educator for BEA Systems
Inc., prior to that he was the director of
distributed computing with The Object
People. He teaches object technology,
design-patterns, and distributed
computing. He leads and mentors web
development projects for Fortune 500
companies. He has developed the
distributed computing curriculum and
services. He has a background in
applied-engineering and computational
physics. He has received his Ph.D. from
Carleton University. He can be reached as
nacidai@acm.org.

69 Objects vs. The Web

TUTORIALS WEDNESDAY

oopsla.acm.org OOPSLA 2001 Conference 109

Wednesday, Afternoon
Marriott Hotel — Meeting Room 2
Brian Henderson-Sellers,
University of Technology, Sydney
The increased complexity associated with
large-scale software-intensive systems
development requires an increase in the
sophistication of the methodology
utilized. Following a general discussion
on the value of processes, one specific
OO/CBD example, OPEN
(Object-oriented Process, Environment
and Notation) is described in detail.
Emphasis will be placed upon the need for
flexibility of processes and how they can
be constructed and configured to
individual circumstances. Finally, some
advice on how to transition to OO/CBD
and deploy this process for the first time
will be given. Objective: The tutorial
objective is to present and understand the
need for flexibility in process and how this
can lead to an organizationally or project
specific process instance using the OPEN
Process Framework as an example. A
secondary goal is to discuss how transition
to an OO environment can be
accomplished.
Attendee Background: Fully conversant
with basic OO terminology and the need
for a full lifecycle process. Experience
with OO methodologies is advantageous.
Those who would benefit most, would
include project managers, systems
developers, analysts and designers.

Presenter: Brian Henderson-Sellers is
Director of the Centre for Object
Technology Applications and Research
and Professor of Information Systems at
University of Technology, Sydney (UTS).
He is author of nine books on object
technology and is well-known for his work
in OO methodologies (MOSES, COMMA
and OPEN) and in OO metrics. In 1999,
he was voted number 3 in the Who’s Who
of Object Technology (Handbook of
Object Technology, CRC Press,
Appendix N). He is currently a member of
the Review Panel for the OMG’s Software
Process Engineering Model (SPEM)
standards initiative.

70 OPEN: A Flexible OO/CBD Process for Software-Intensive
Systems Development

TUTORIALS

110 OOPSLA 2001 Conference oopsla.acm.org

NOTES:

